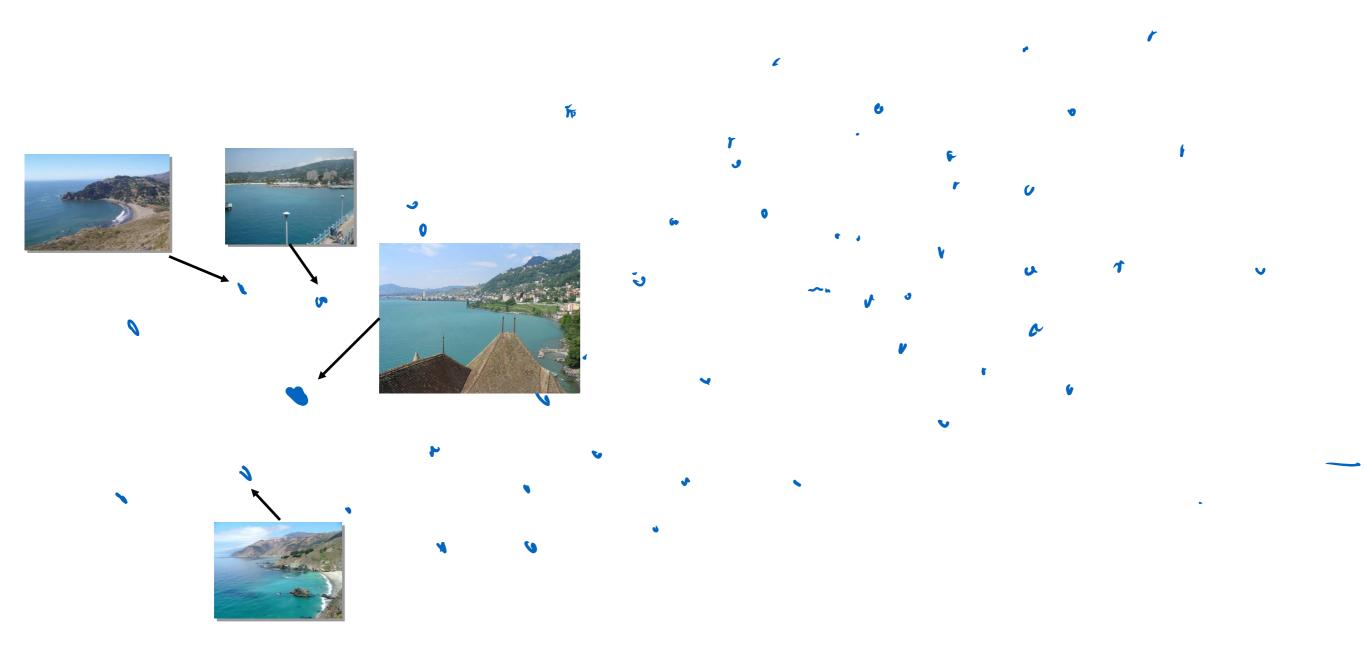


Convolutional Network for Image Synthesis Jun-Yan Zhu

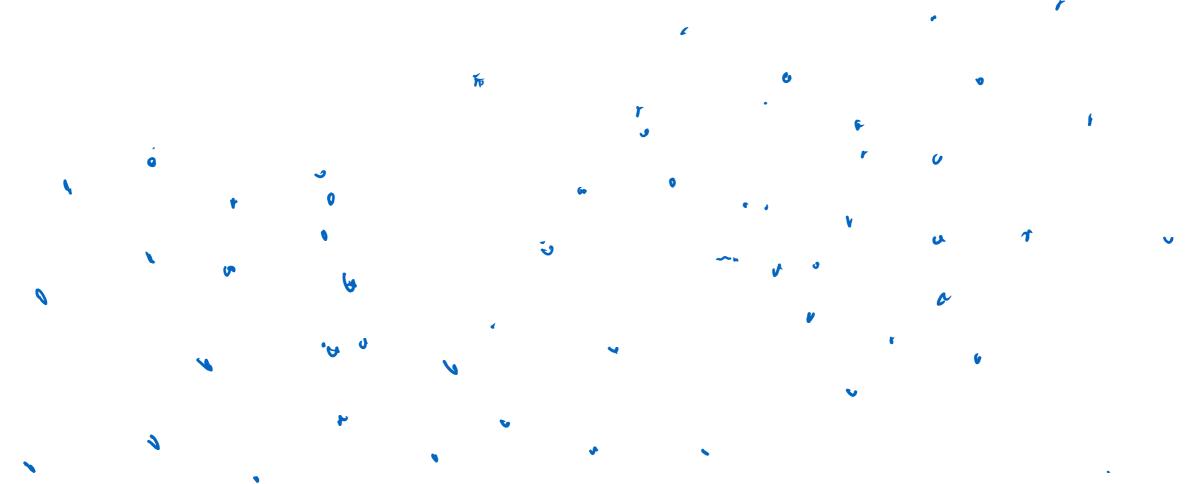
16-726 Learning-based Image Synthesis, Spring 2022

many slides from Alyosha Efros, Phillip Isola, Richard Zhang, James Hays, and Andrea Vedaldi, Jitendra Malik.

Review (data-driven graphics)



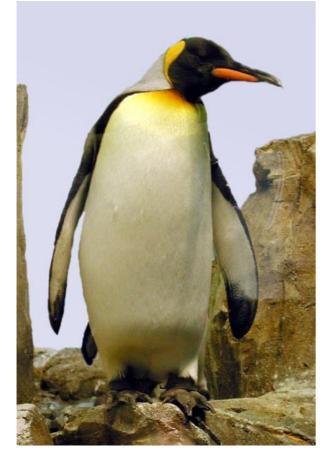
Review (data-driven graphics)



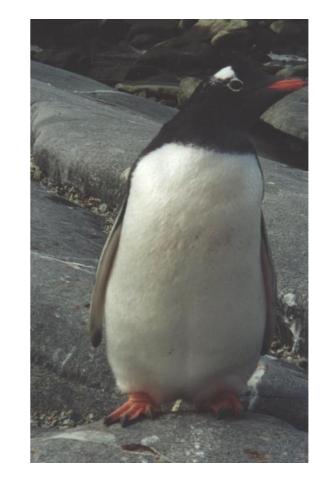
Nearest neighbor methods:

- 1. Stored`examples
- 2. Calculate distance between two examples
- 3. Voting (label transfer): image blending/averaging

Visual similarity via labels

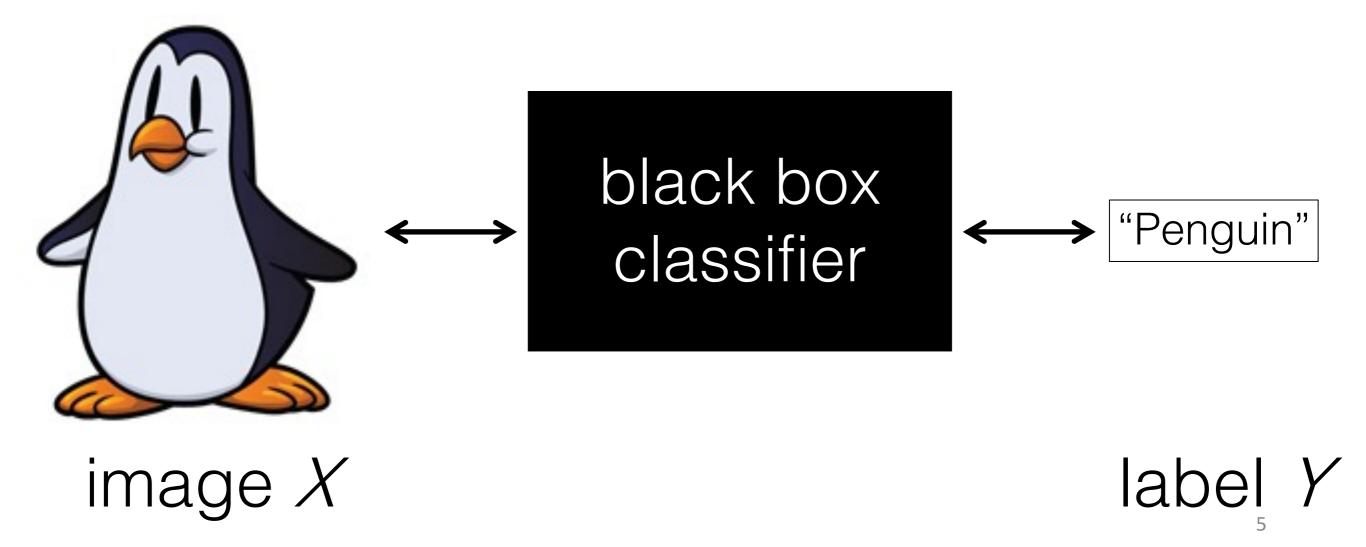


"Penguin"

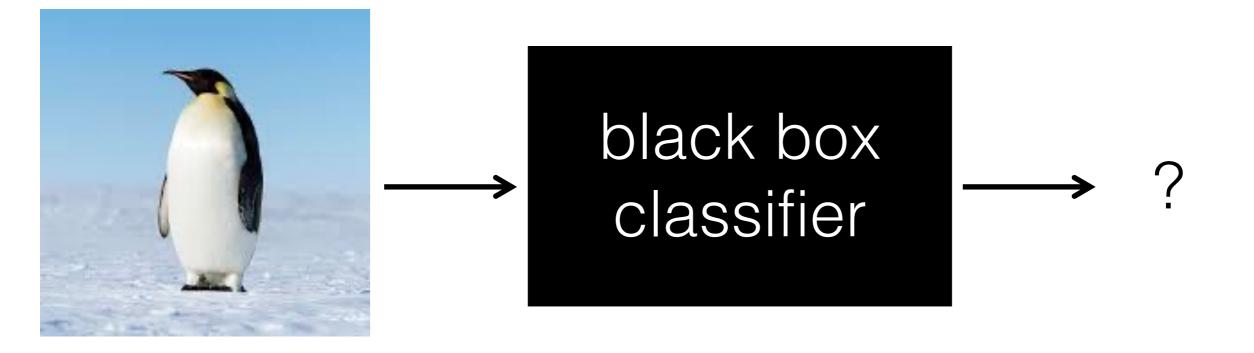


"Penguin"

Machine Learning as data association



At test time...



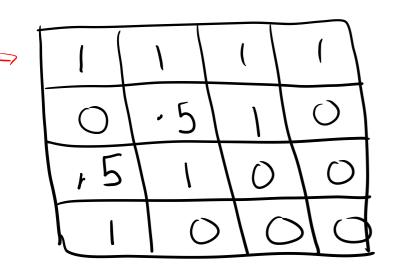
Examples from MNIST dataset [LeCun. 1998]

Warm-up Example: Binary Digit Classification

Learning Approach to Digit Recognition

- Collect Training Images
 - Positive:
- Training Time
 - Compute feature vectors for positive and negative example images
 - Train a classifier
- Test Time
 - Compute feature vector on new test image:
 - Evaluate classifier

Let us take an example...

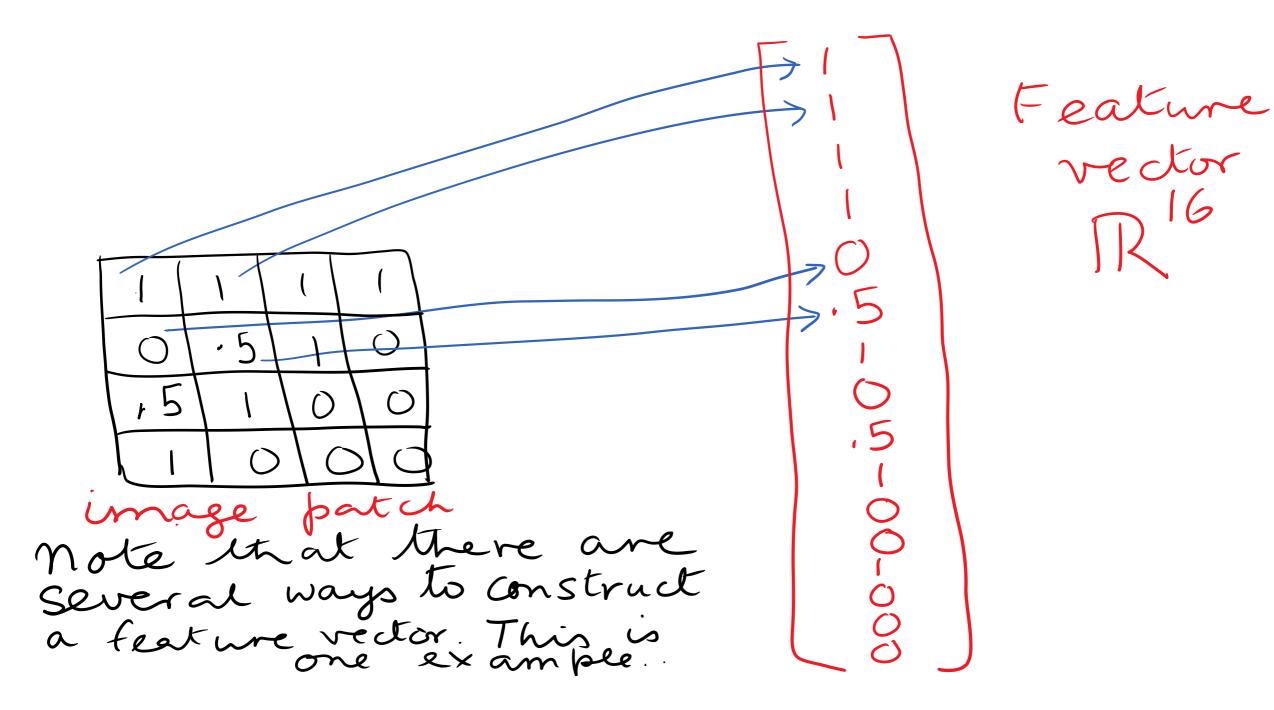


L mage patch

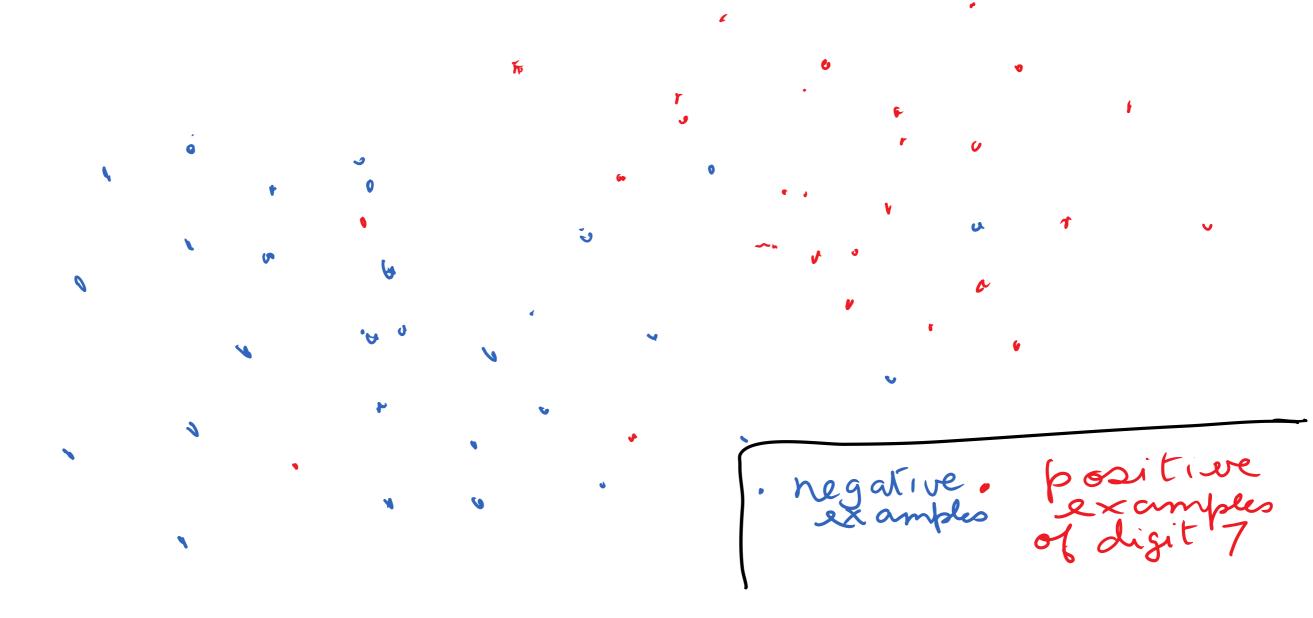
10

Let us take an example...

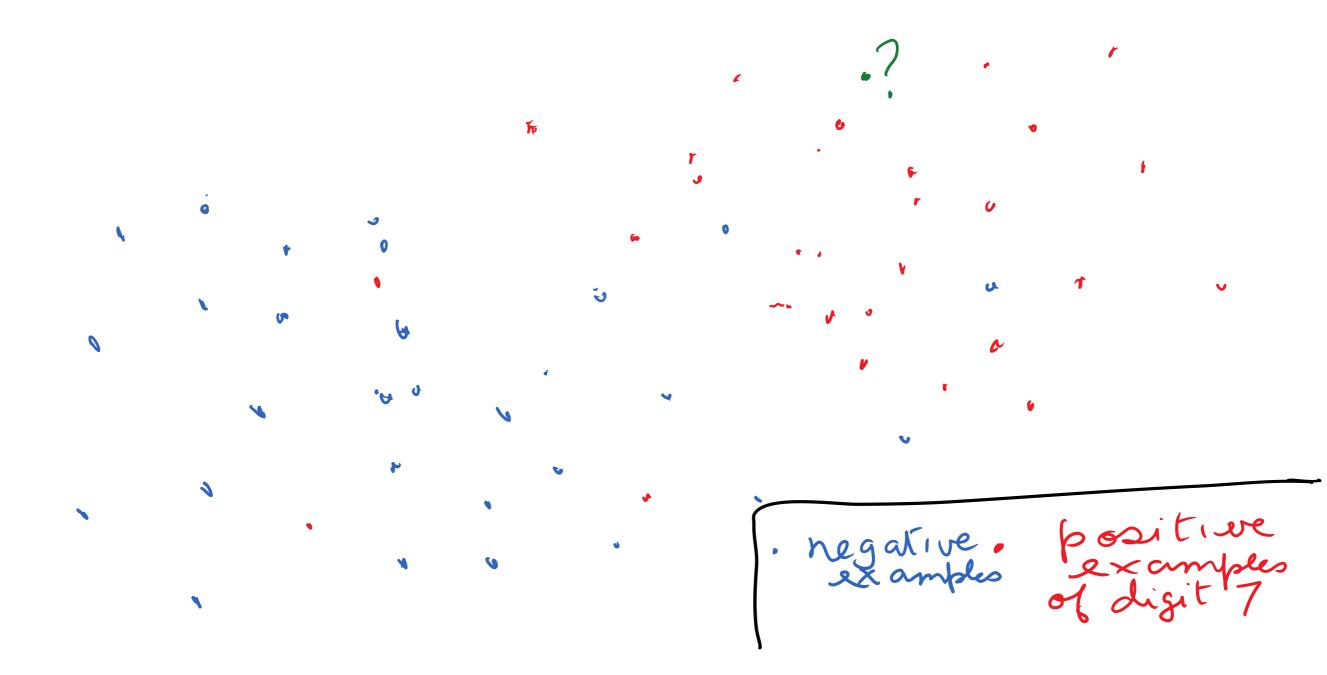
~ 16



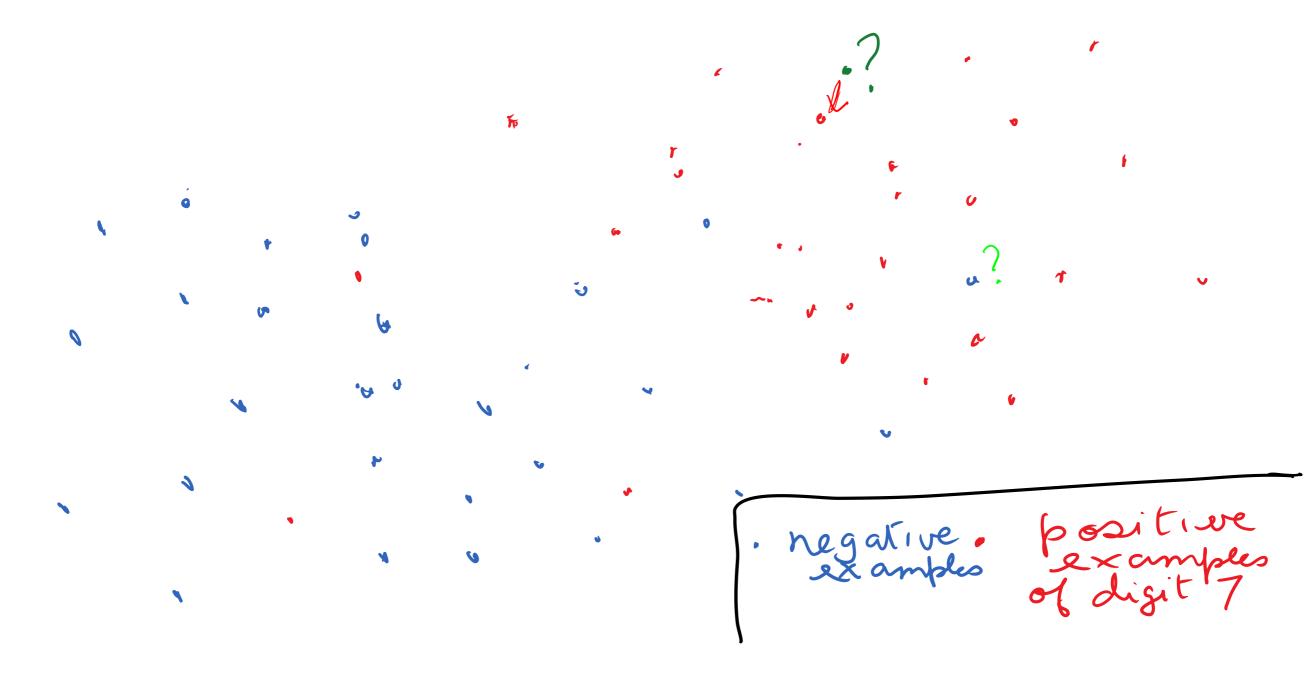
In feature space, positive and negative examples are just points...



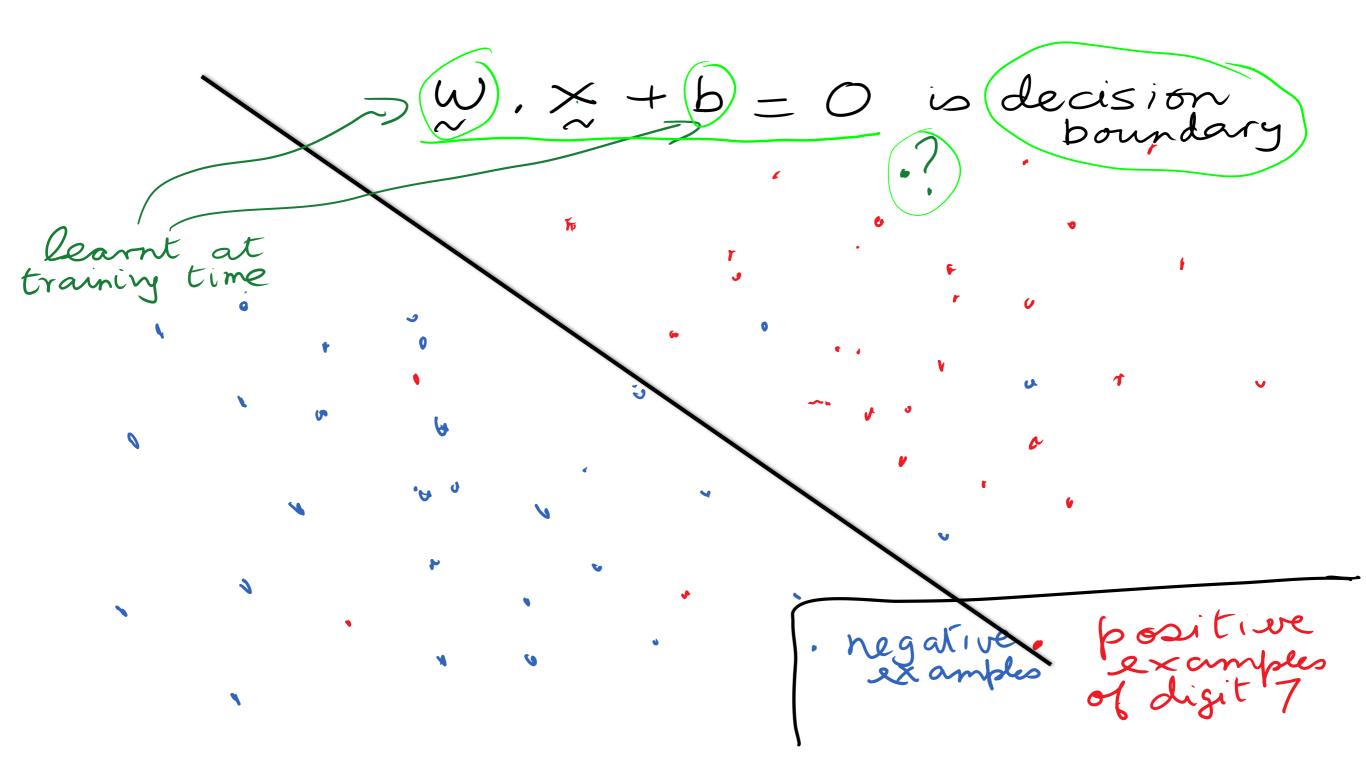
How do we classify a new point?



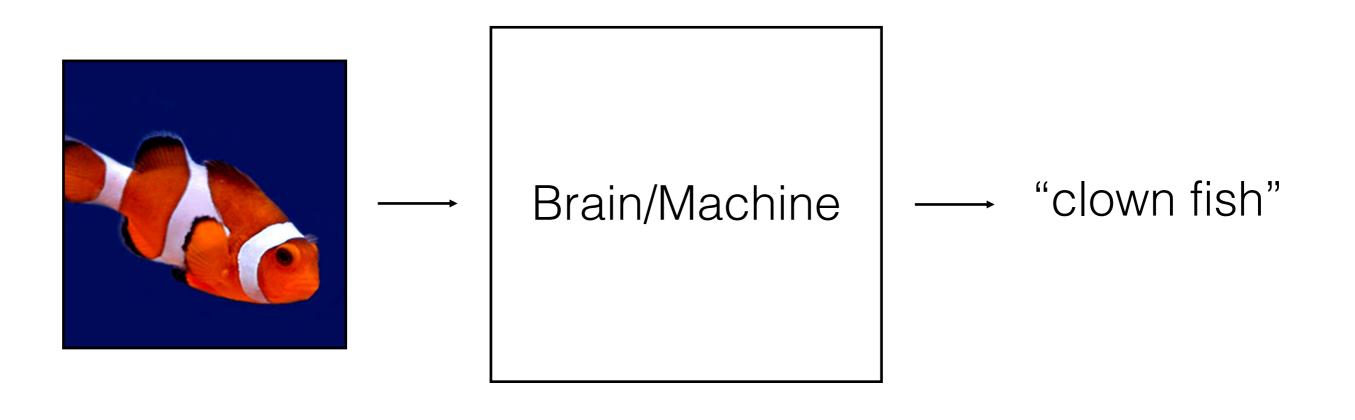
Nearest neighbor rule "transfer label of nearest example"



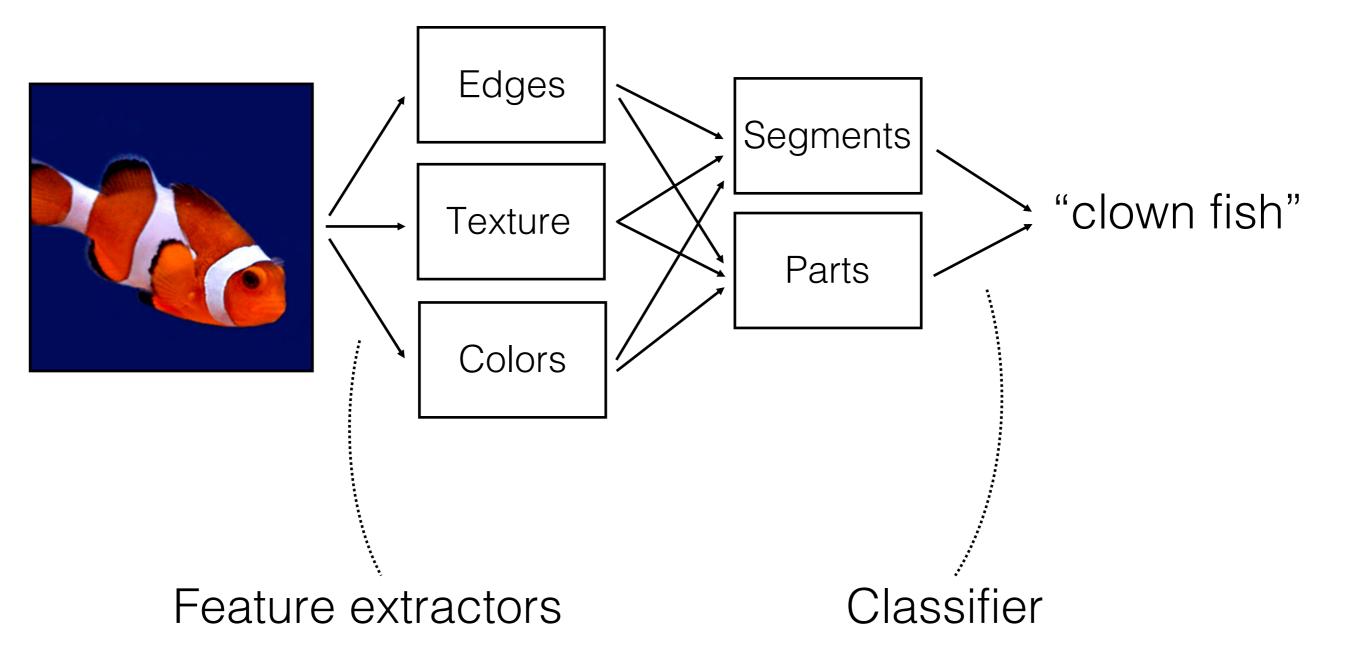
Linear classifier rule



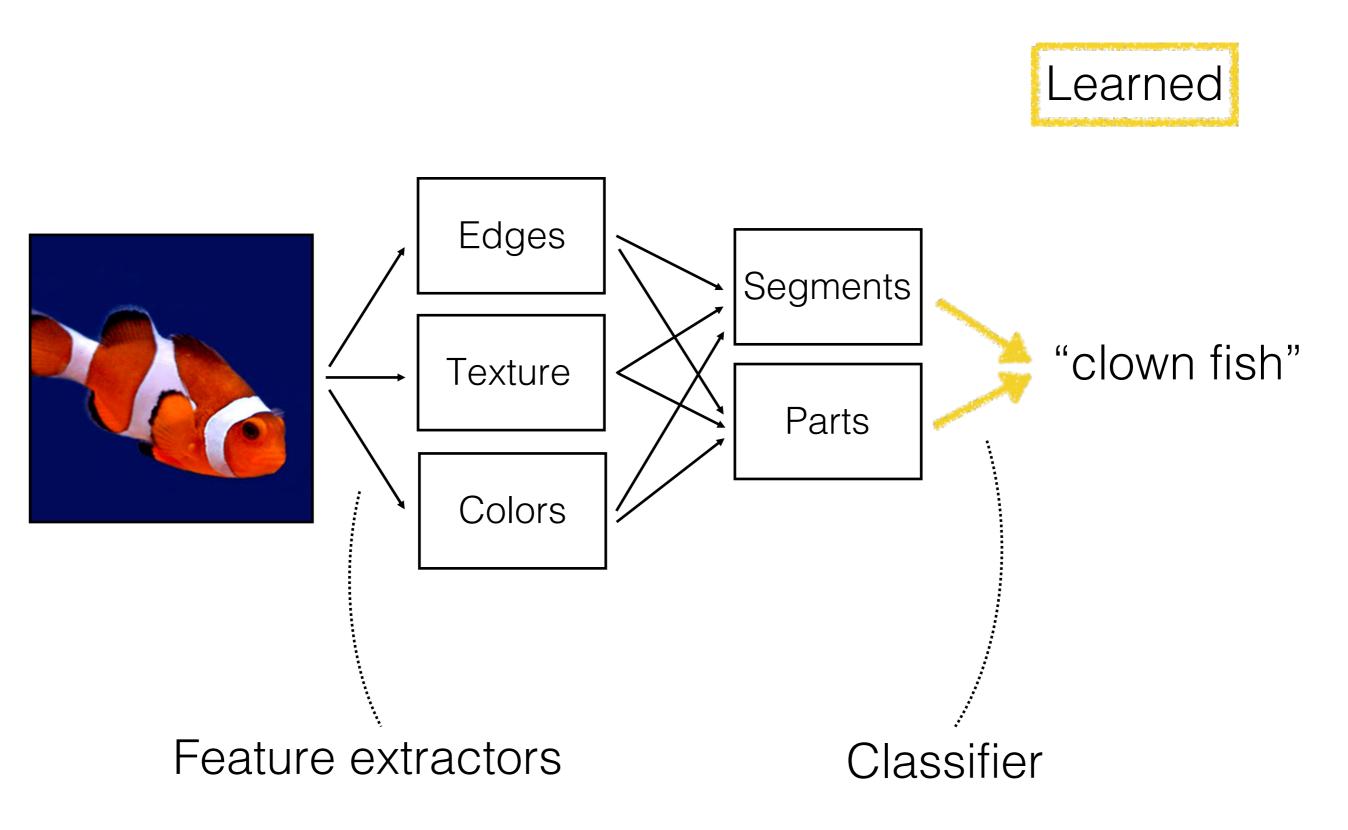
Basic idea



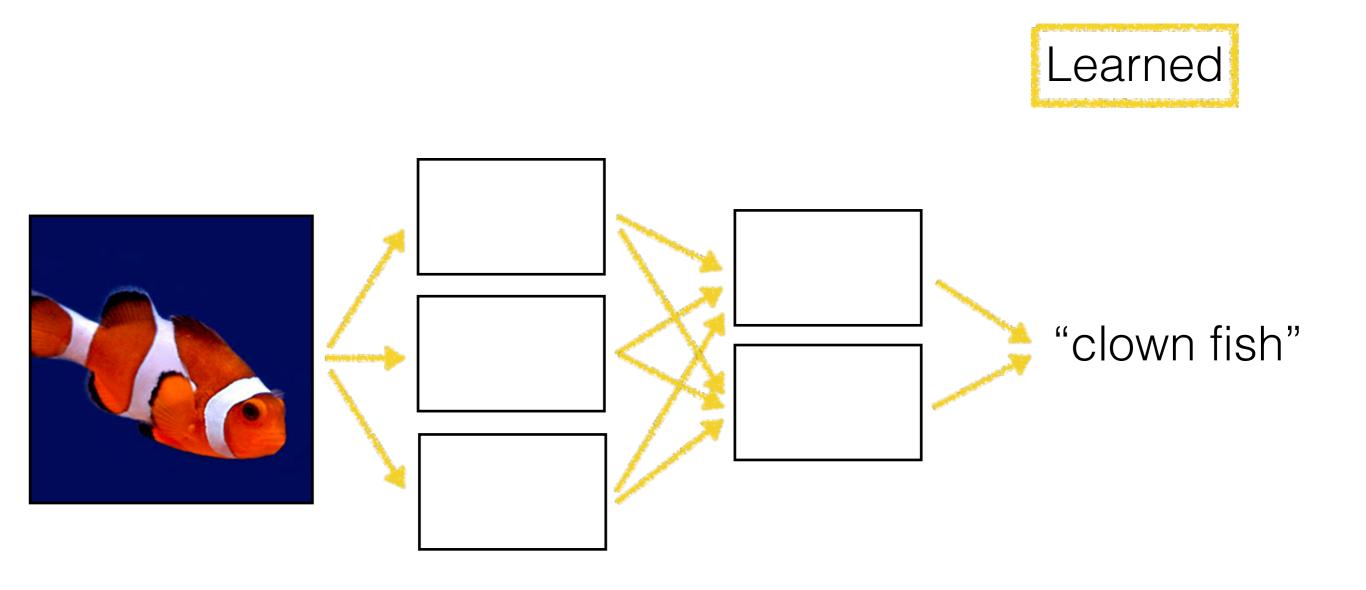
Object recognition



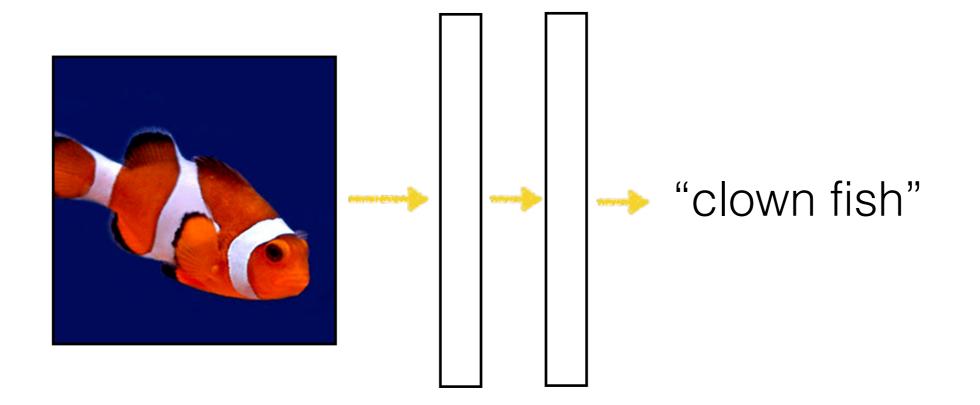
Object recognition



Neural network

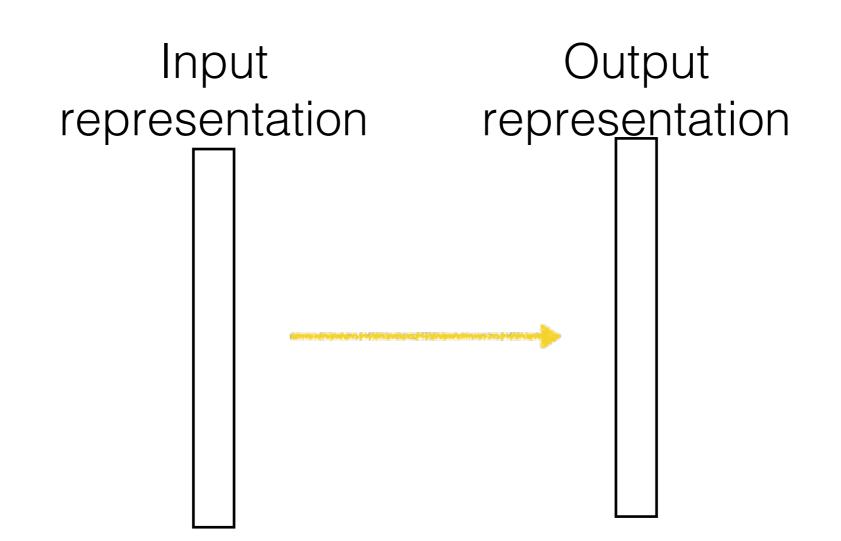


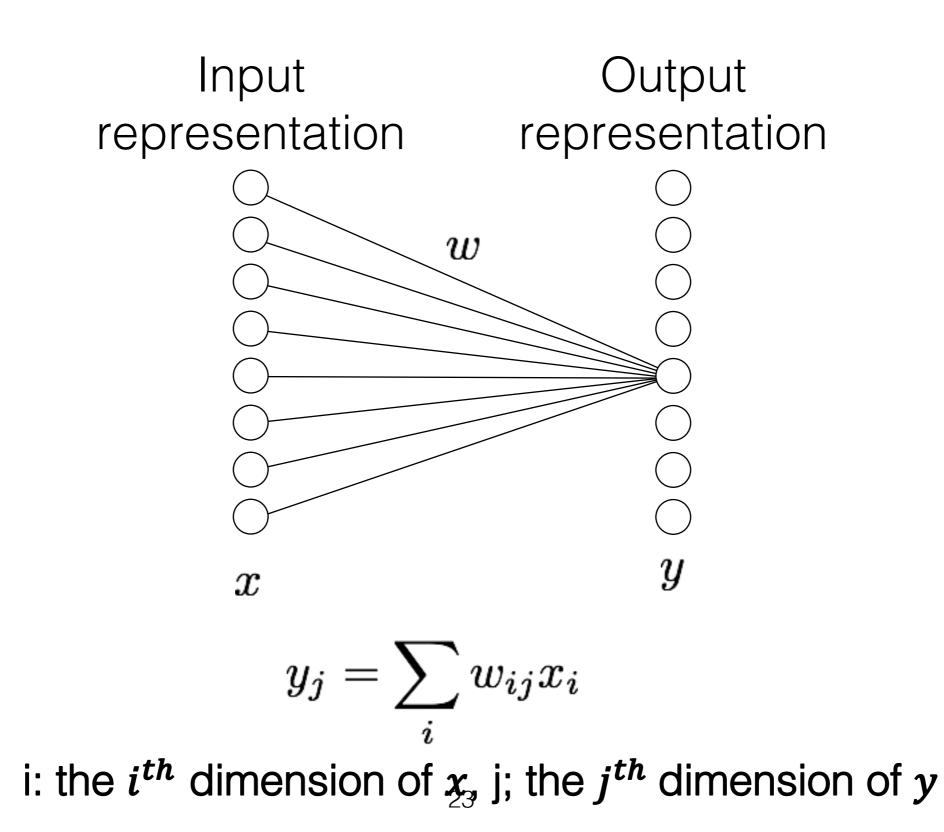
Neural network

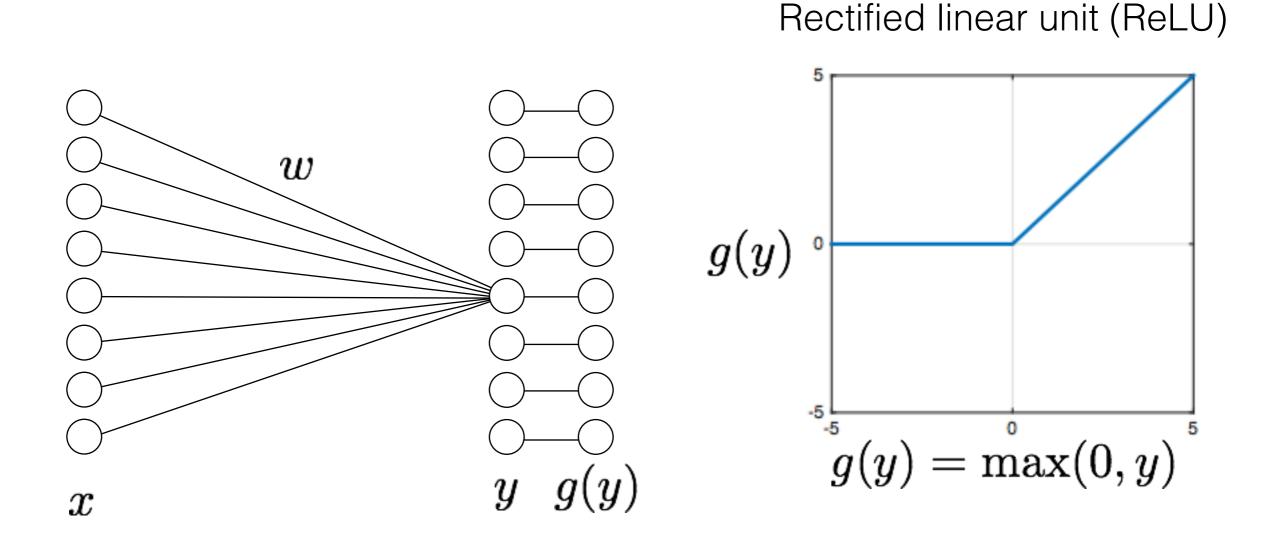


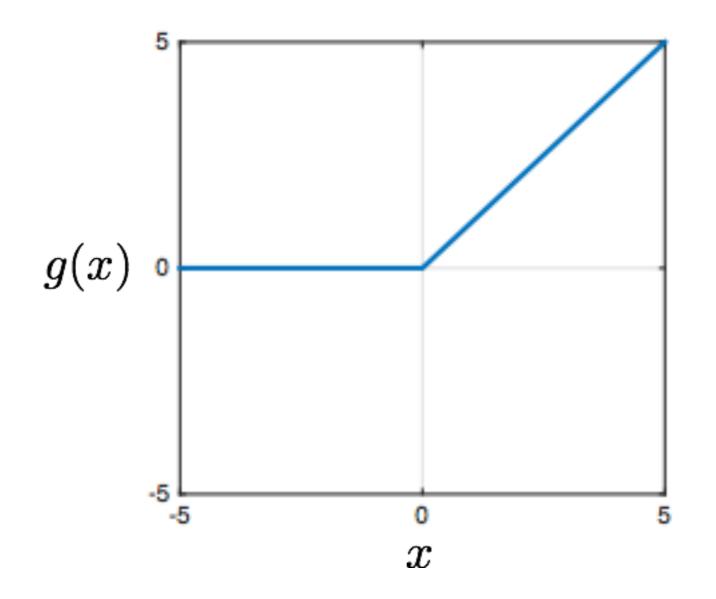
Deep neural network



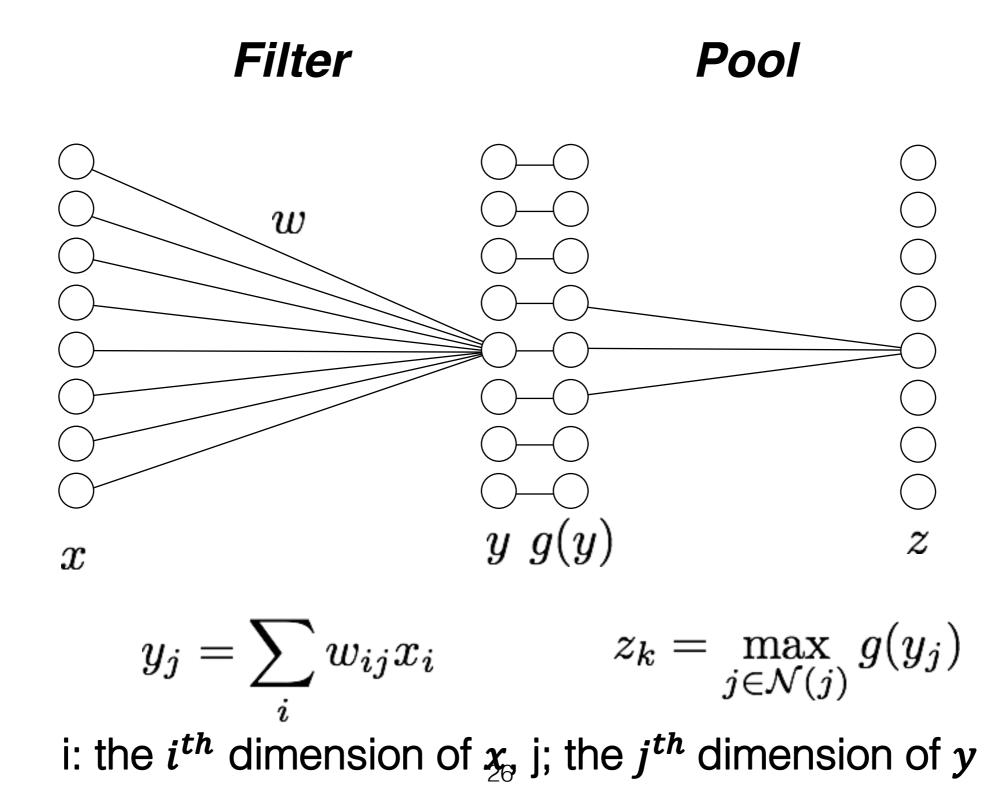




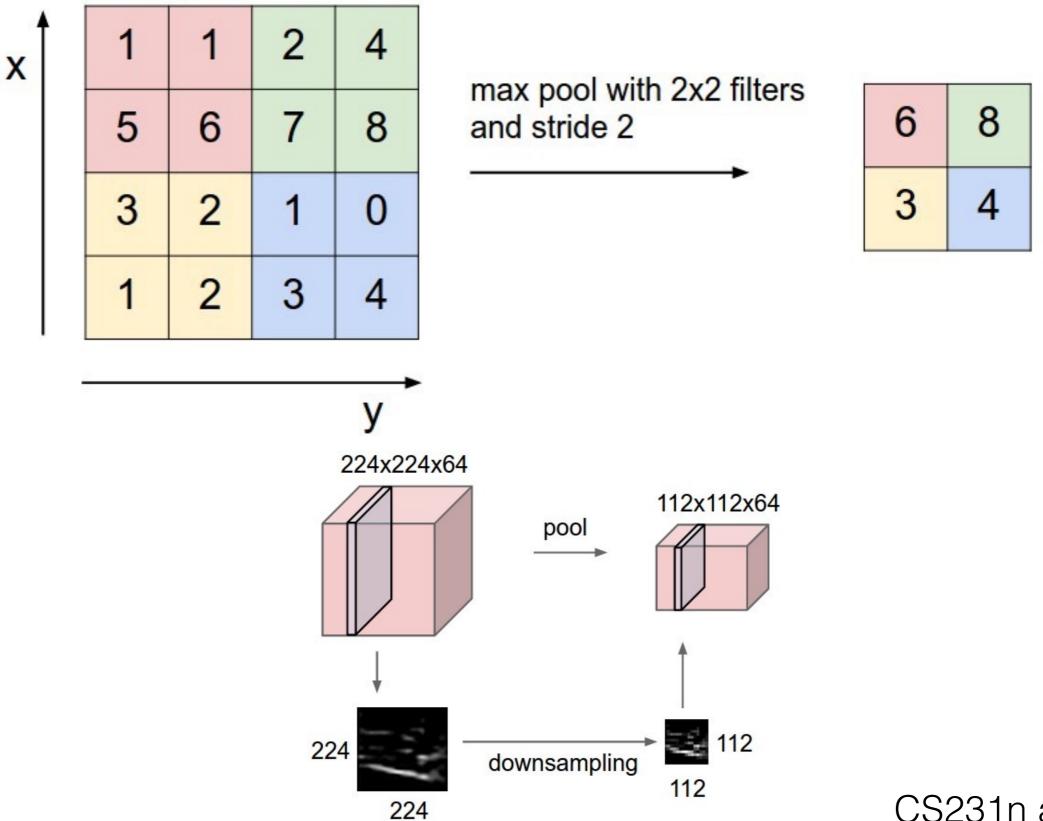




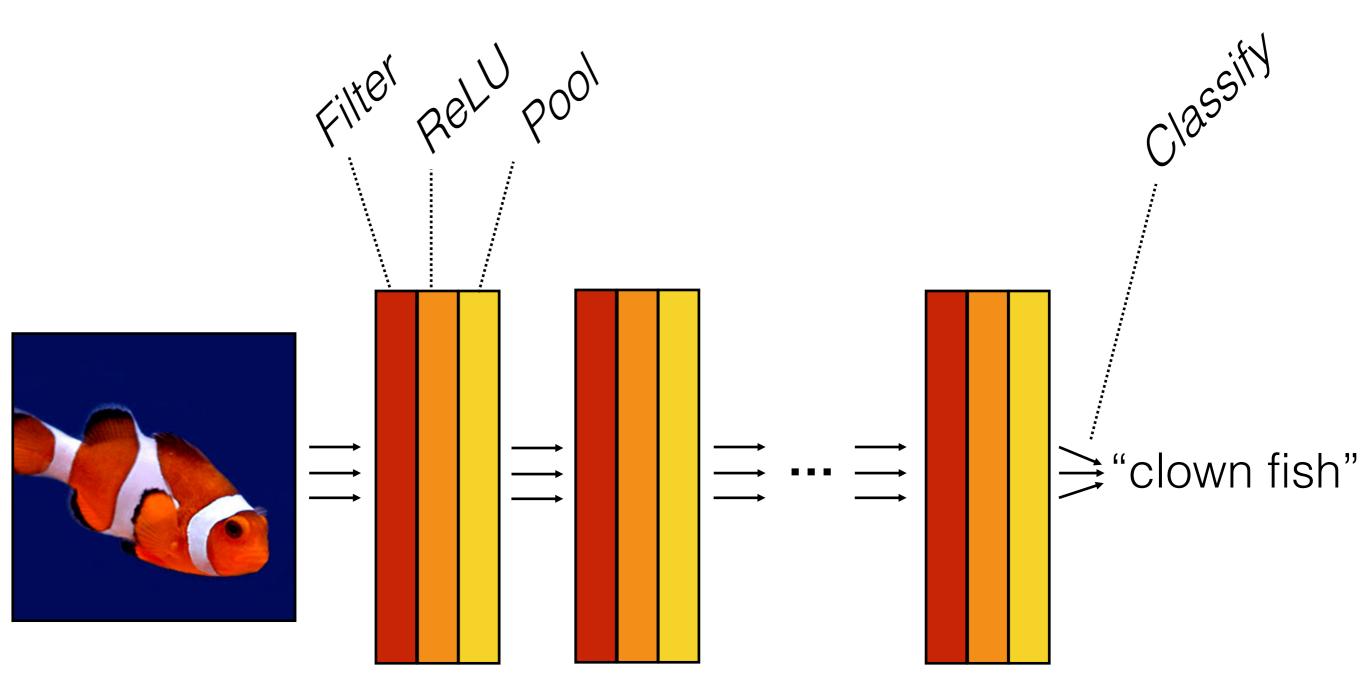
 $g(x) = \max(0, x)$



Single depth slice

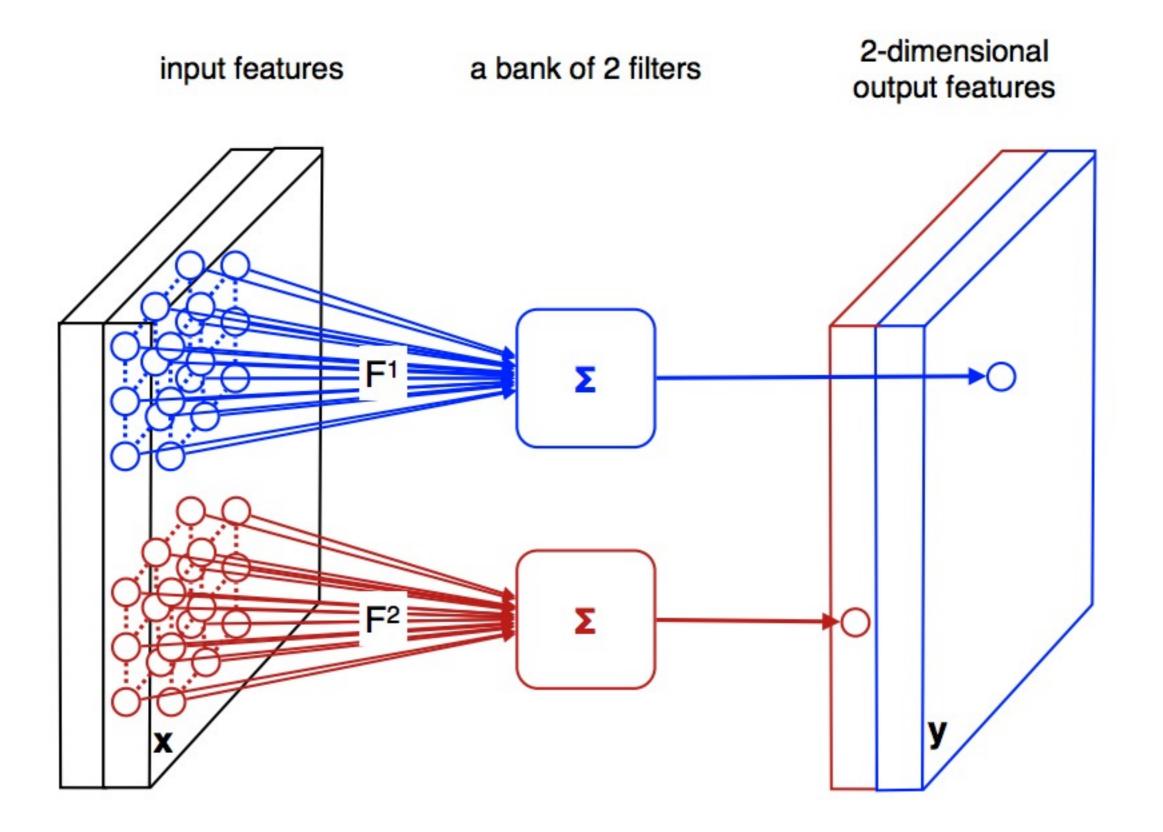


CS231n at Stanford



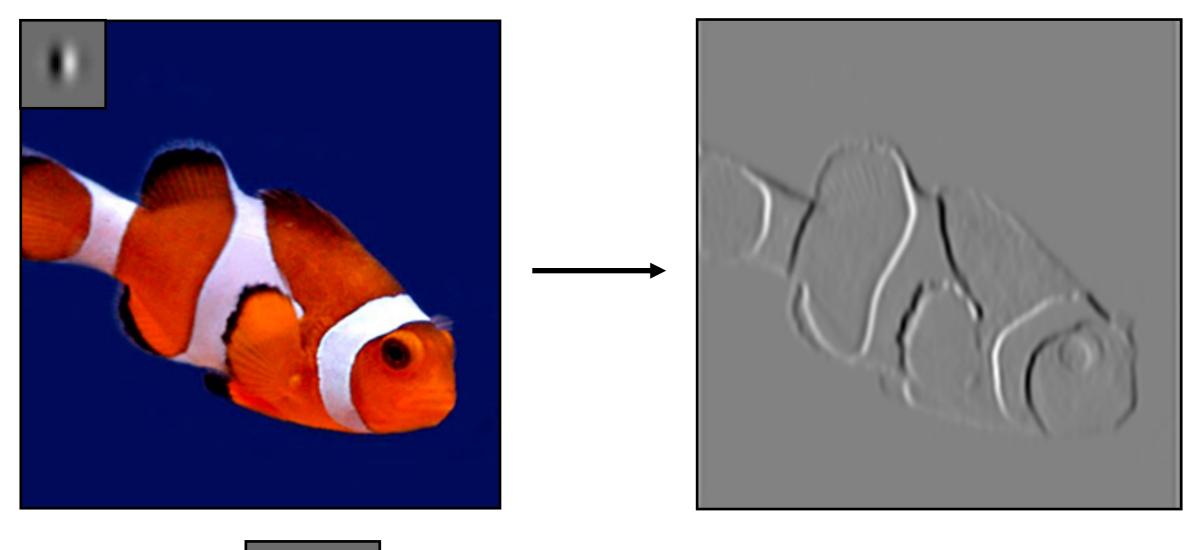
 $f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$

Convolutional Neural Nets

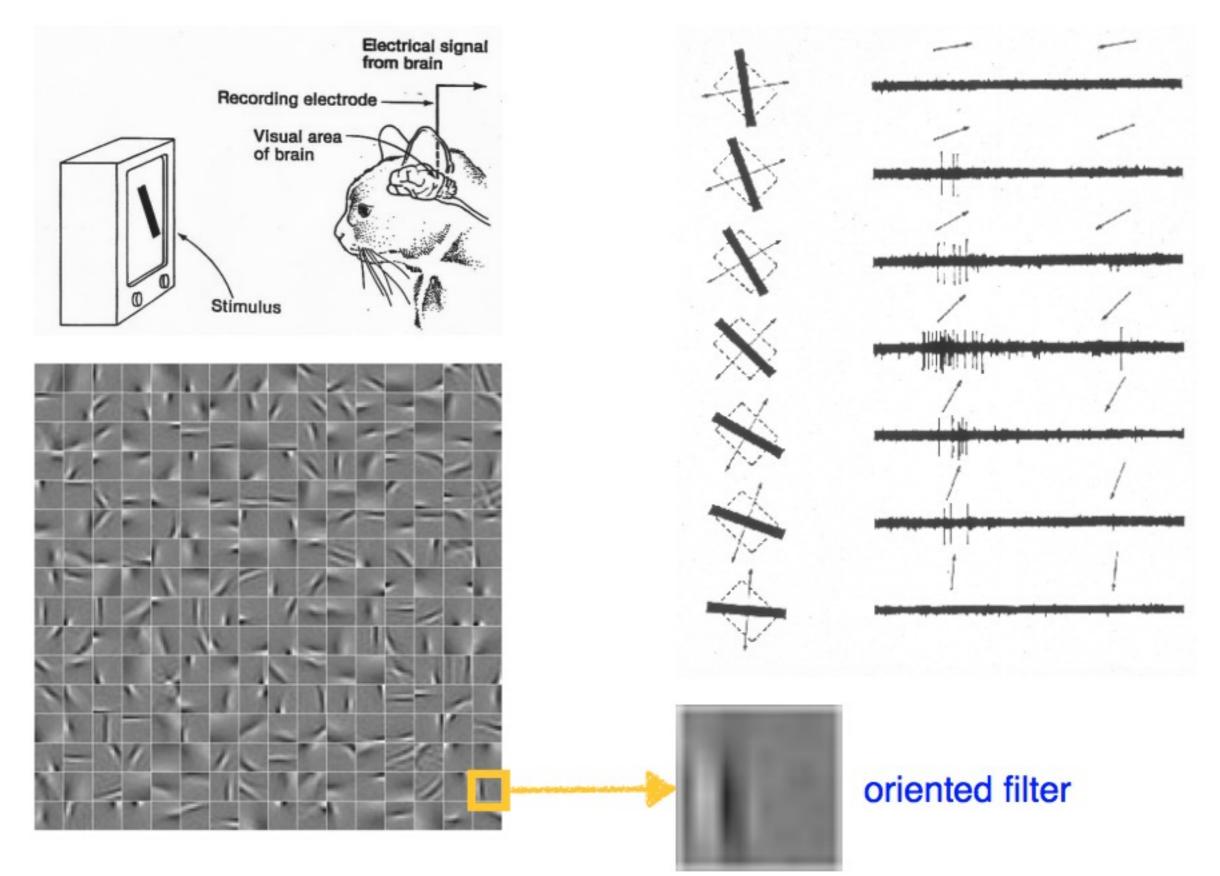


Convolutional Neural Nets

Convolution

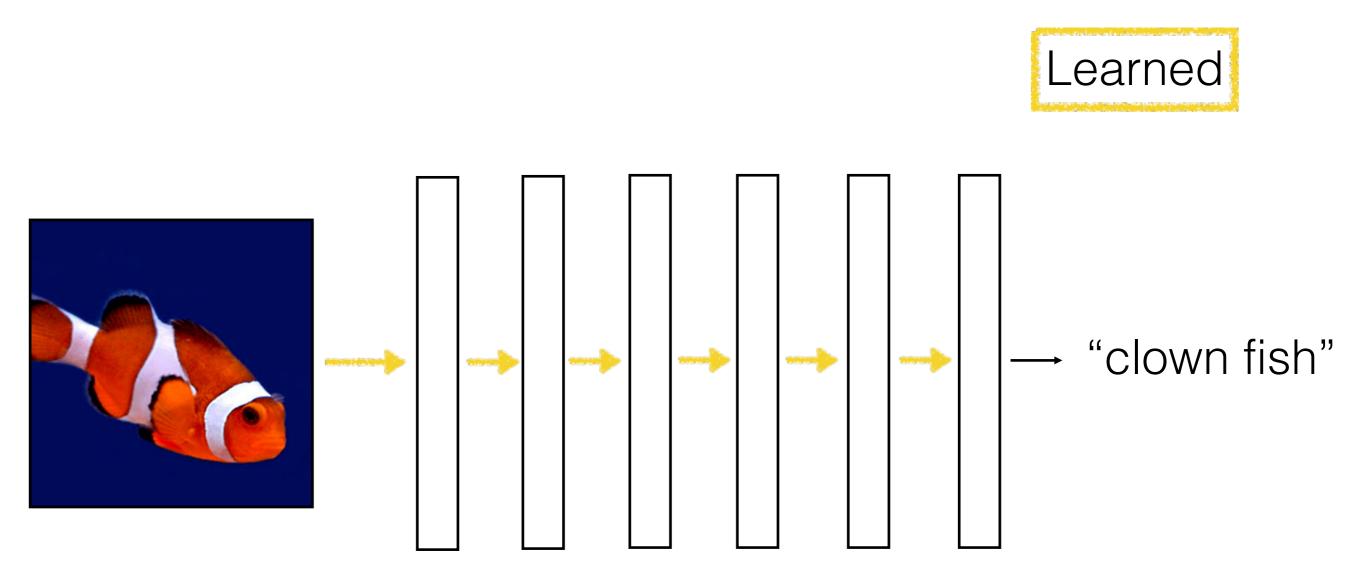


[Hubel and Wiesel 59]



Slide from Andrea Vedaldi

Learning with deep nets



Learning with deep nets

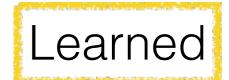
"clown fish"

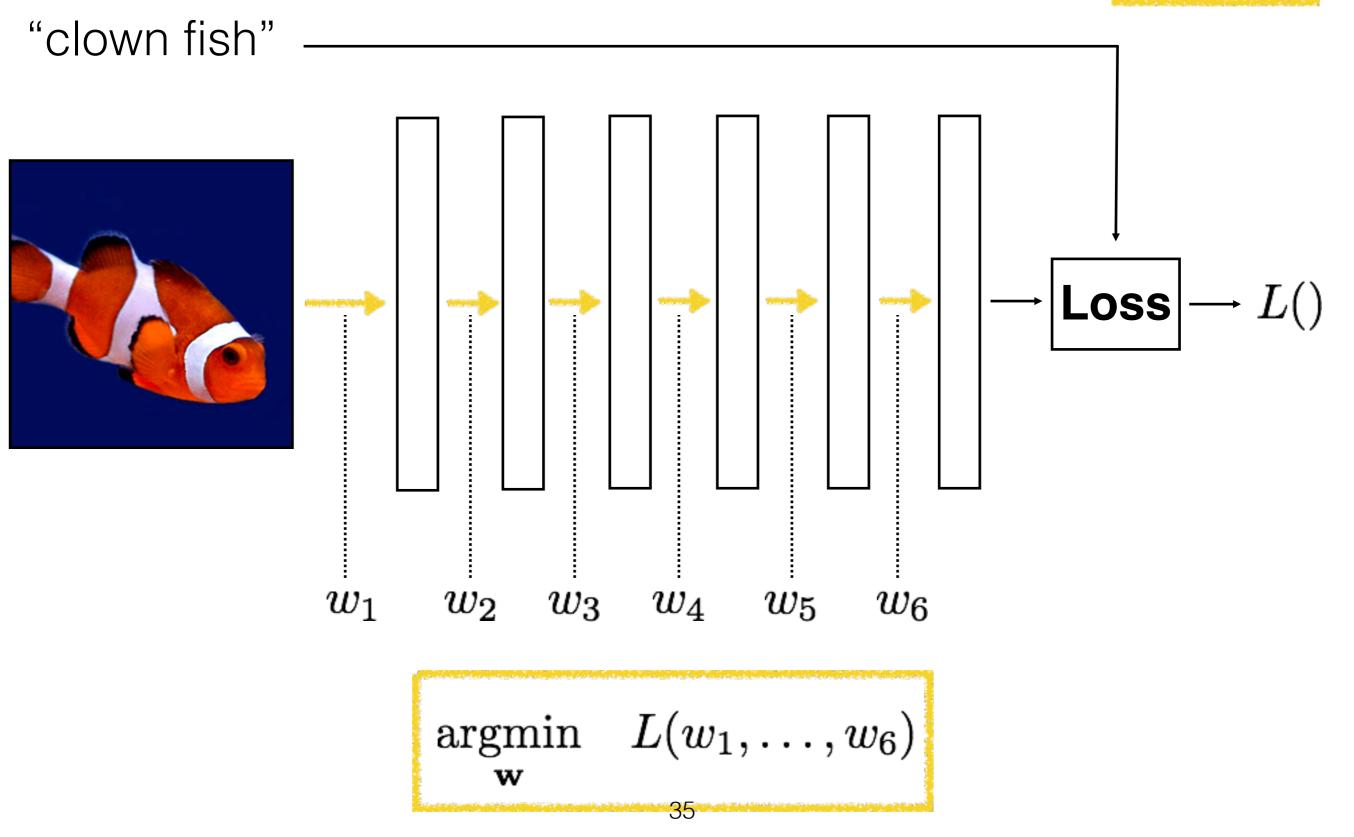
"grizzly bear"

Train network to associate the right label with each image

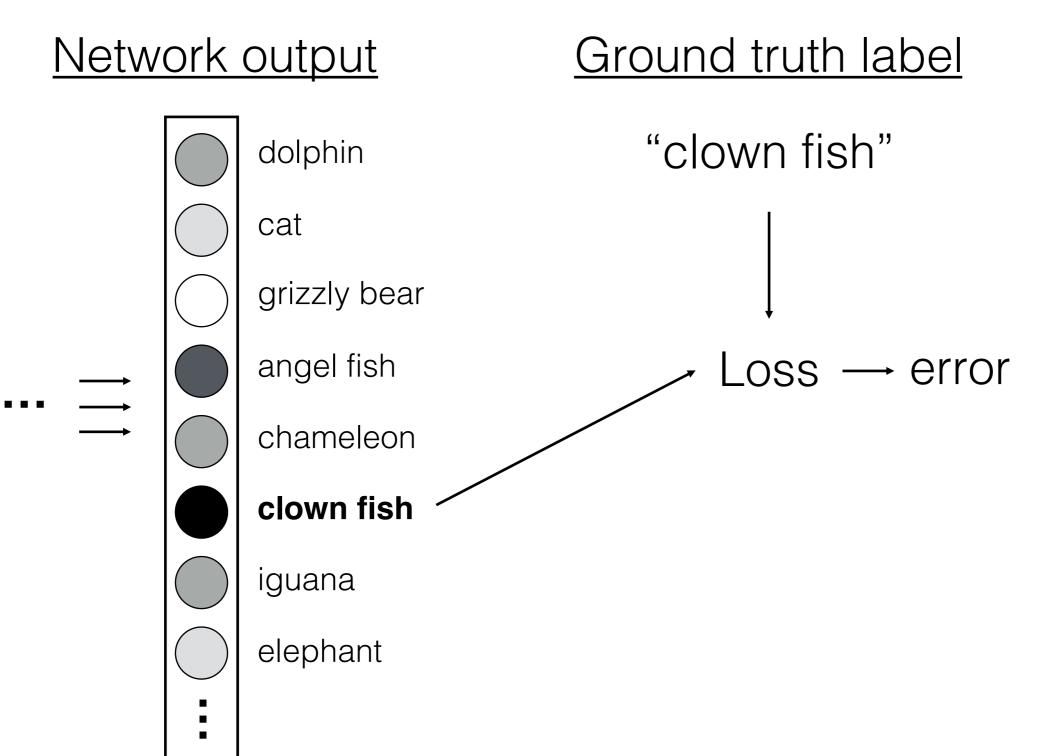
"chameleon"

Learning with deep nets

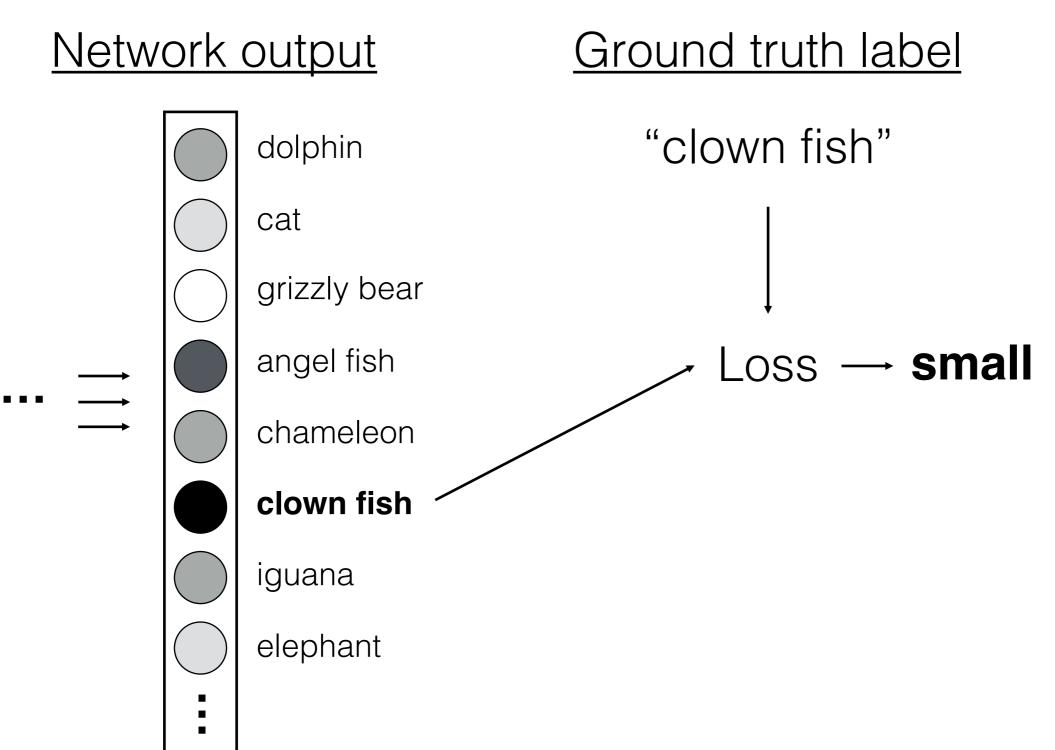




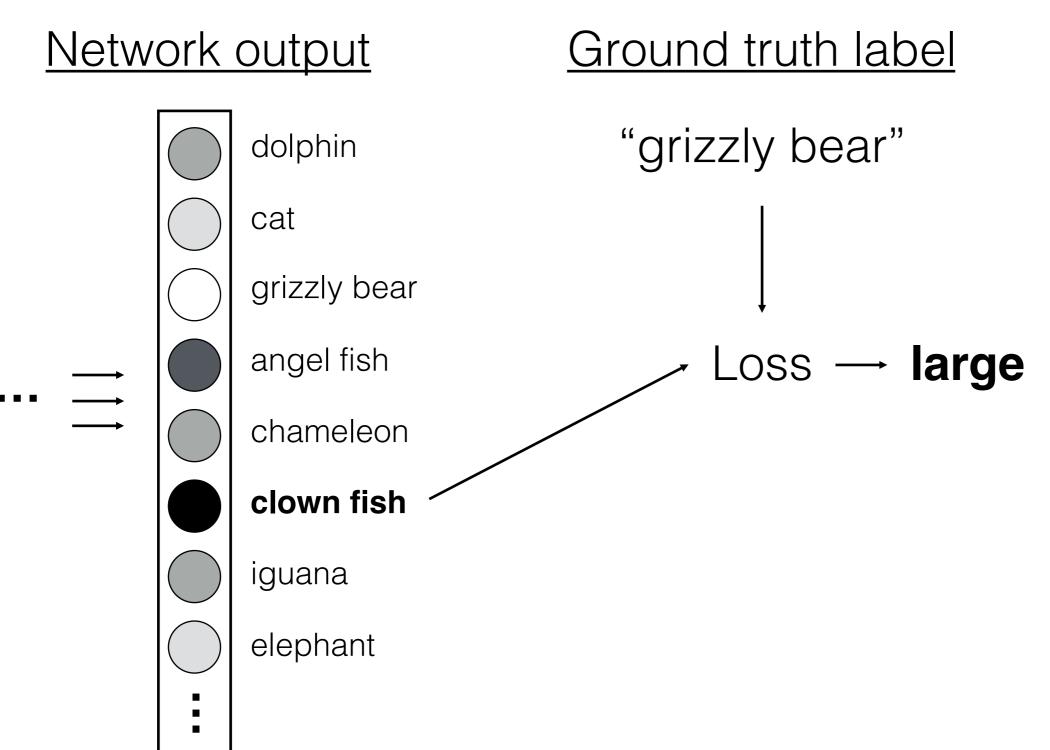
Loss function



Loss function

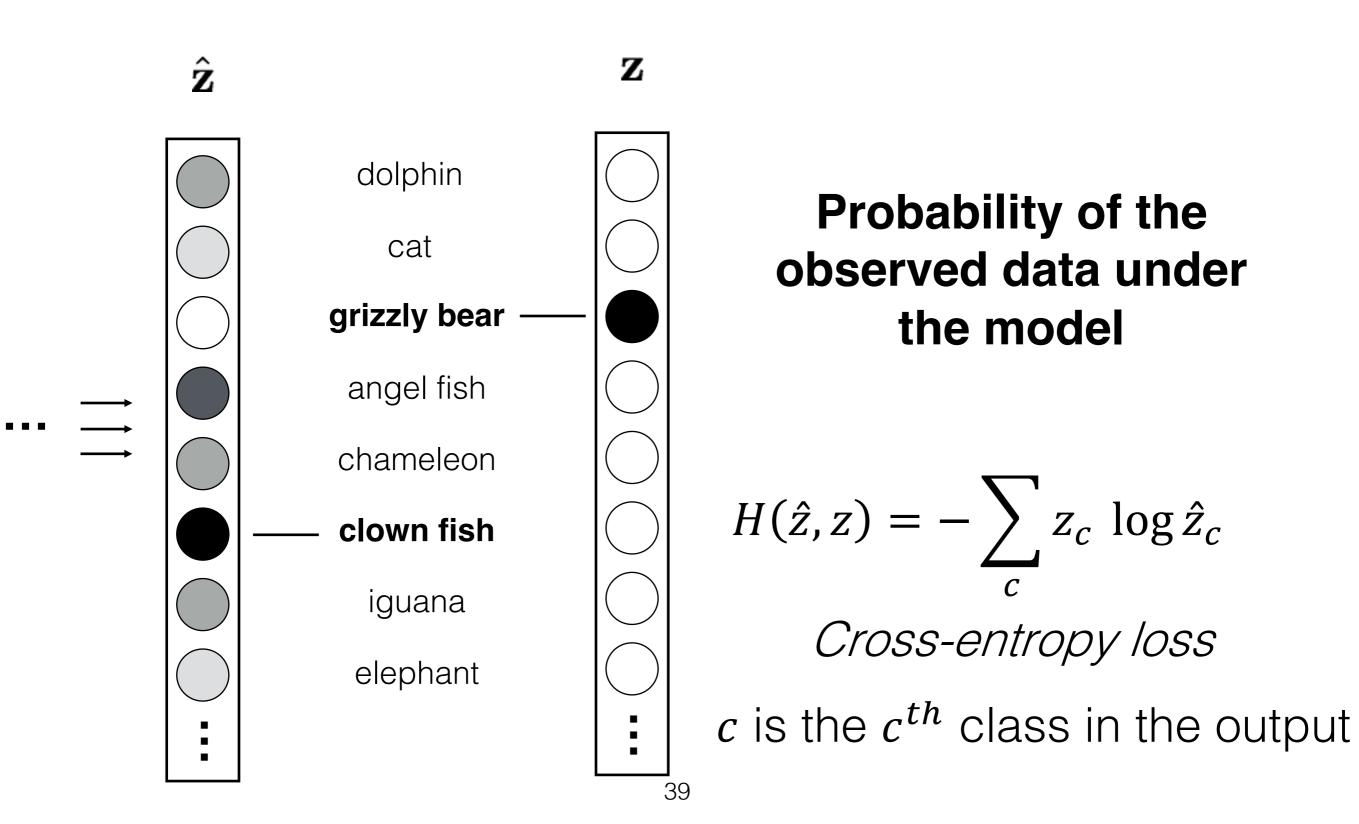


Loss function



Loss function for classification

Network output Ground truth label



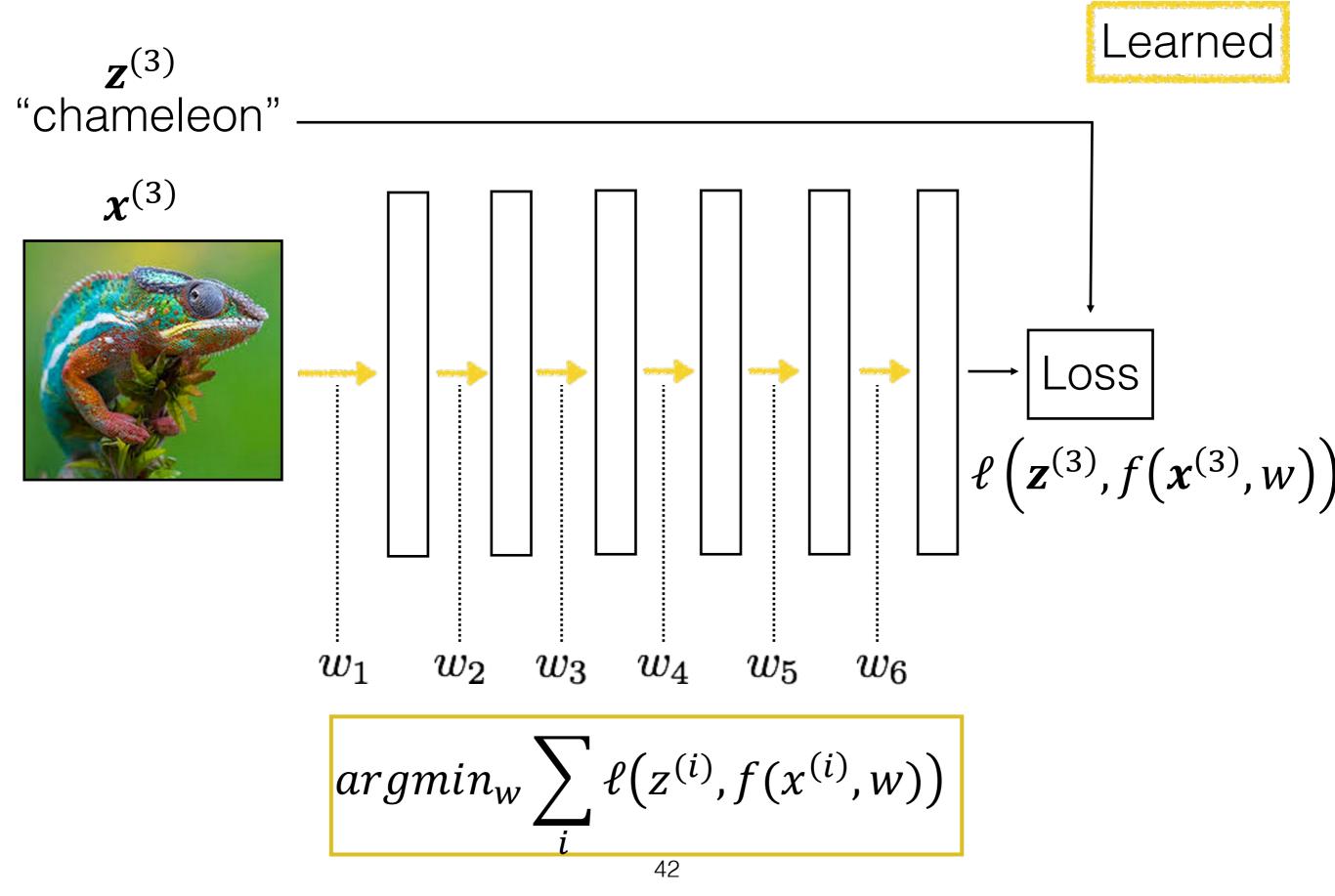
Learning with deep nets Learned $z^{(1)}$ "clown fish" $x^{(1)}$ Loss $\left(\mathbf{z}^{(1)}, f(\mathbf{x}^{(1)}, w)\right)$ w_1 w_3 w_5 w_2 w_4 w_6

 $x^{(1)}, z^{(1)}$ is the input and label of the 1st training image

Learning with deep nets Learned $z^{(2)}$ "grizzly bear" $x^{(2)}$ Loss ~ • $\left(\mathbf{z}^{(2)}, f(\mathbf{x}^{(2)}, w)\right)$ w_1 w_2 w_3 w_5 w_4 w_6

 $x^{(2)}, z^{(2)}$ is the input and label of the 2nd training image

Learning with deep nets



Gradient descent

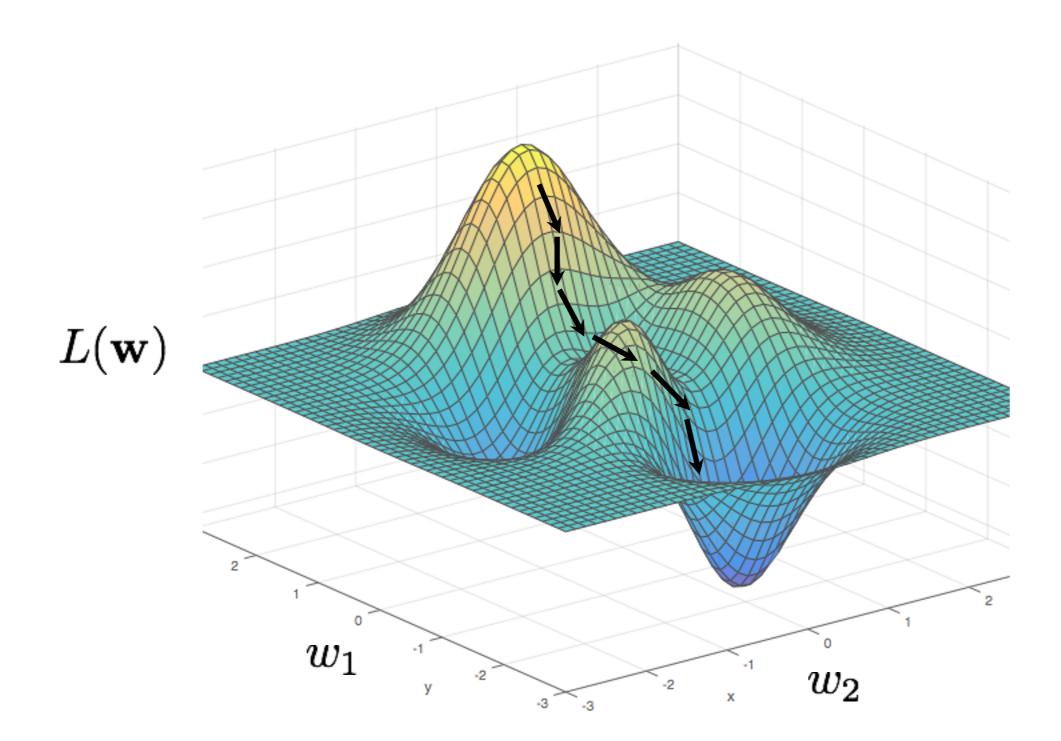
$$argmin_{w}\sum_{i}\ell(z^{(i)},f(x^{(i)},w)) = argmin_{w}L(w)$$

One iteration of gradient descent:

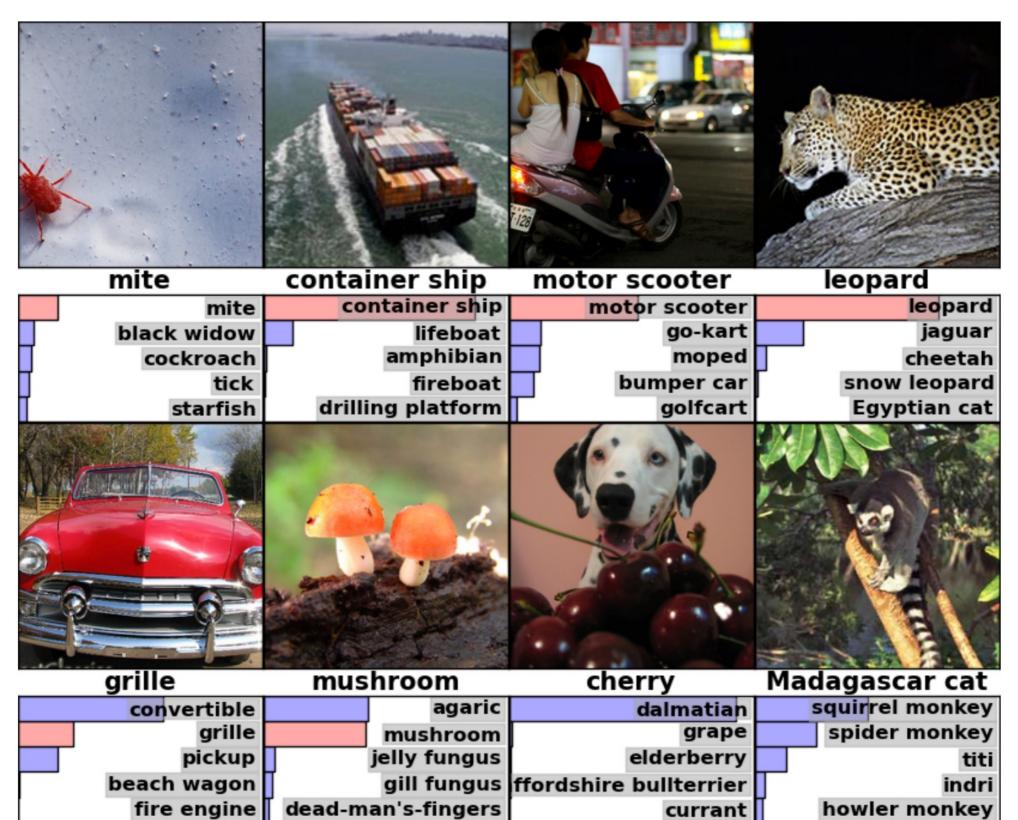
$$\mathbf{w}^{t+1} = \mathbf{w}^{t} - \eta_{t} \frac{\partial L(\mathbf{w}^{t})}{\partial \mathbf{w}}$$

learning rate

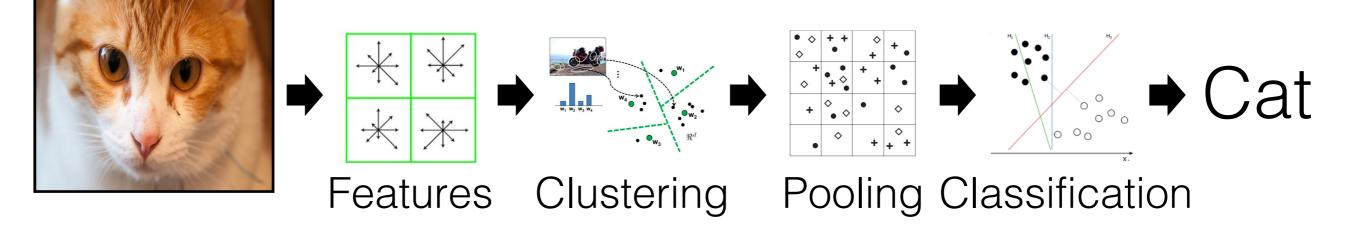
Gradient descent



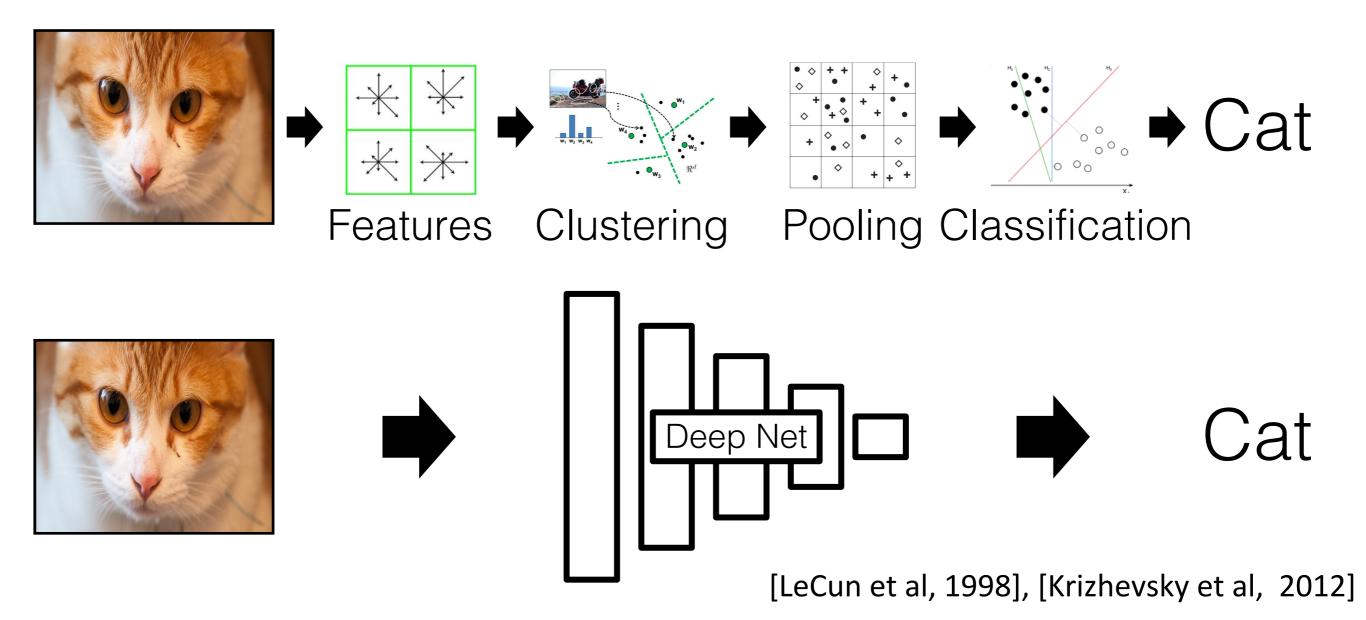
 $p(c|\mathbf{x})$



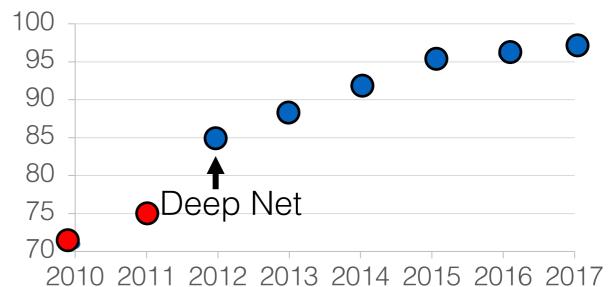
Computer Vision before 2012



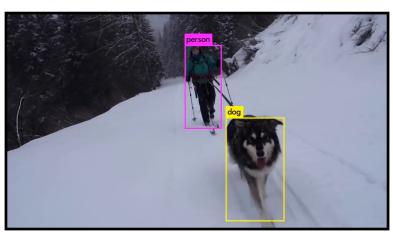
Computer Vision Now



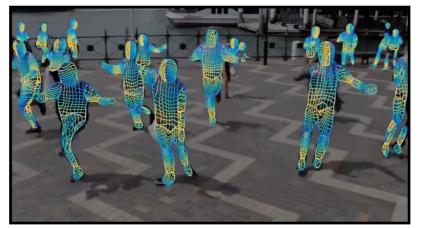
Deep Learning for Computer Vision



Top 5 accuracy on ImageNet benchmark



[Redmon et al., 2018] Object detection

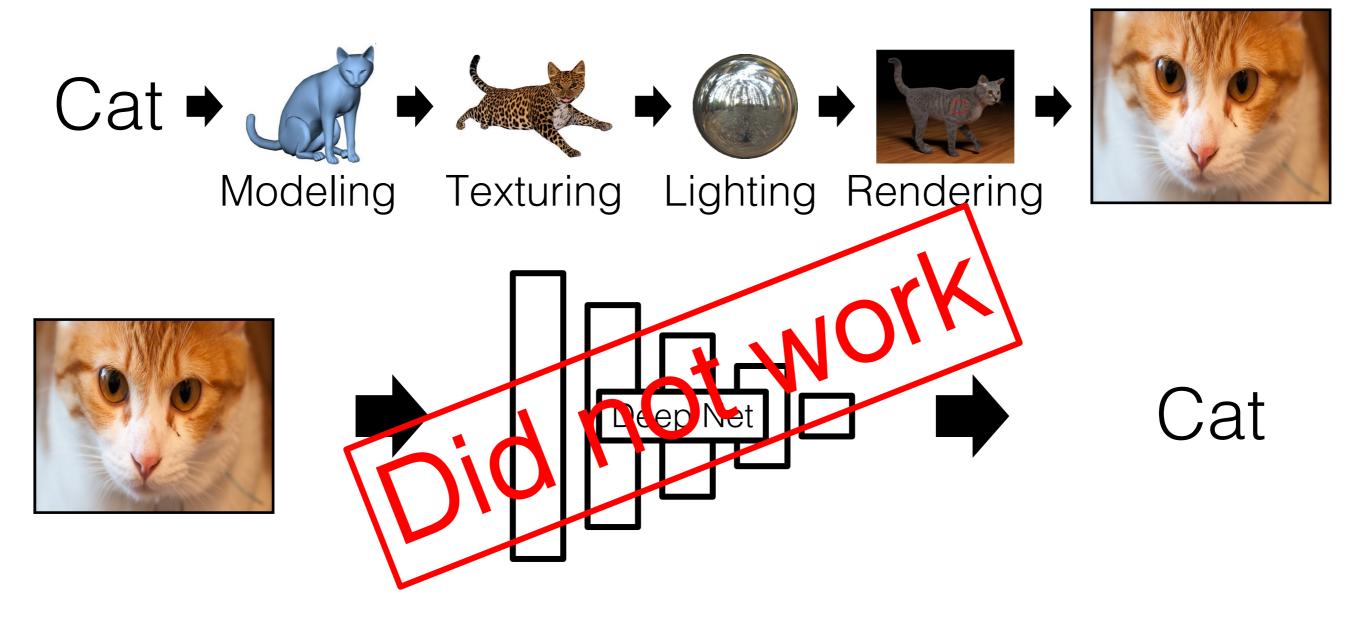


[Güler et al., 2018] Human understanding

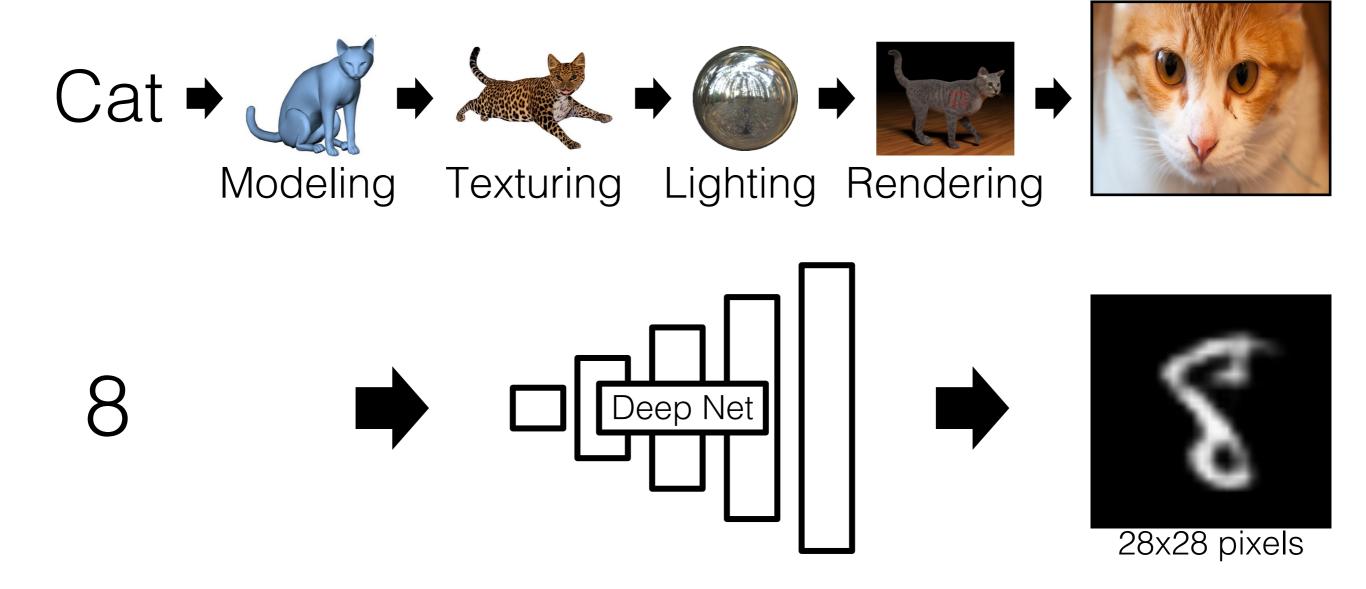
[Zhao et al., 2017] Autonomous driving

Can Deep Learning Help Graphics?

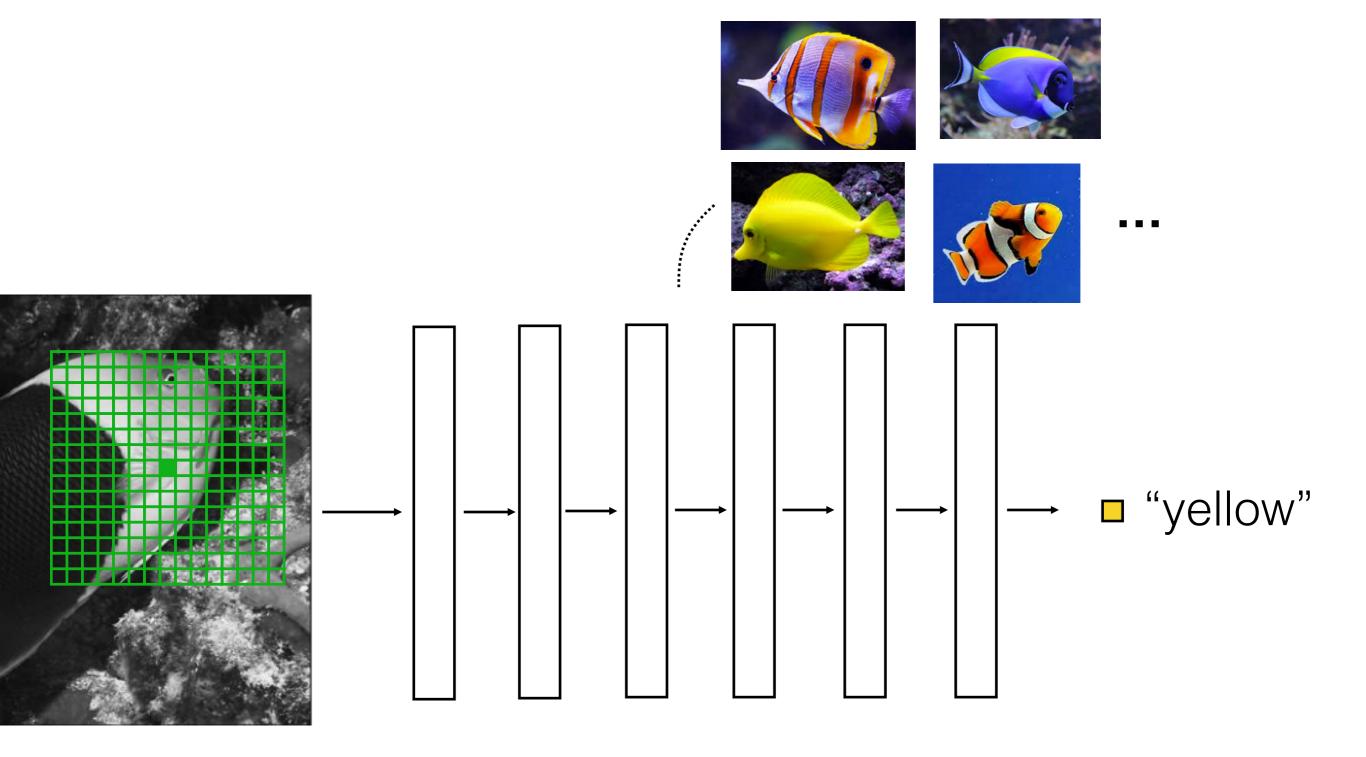
Can Deep Learning Help Graphics?



Generating images is hard!

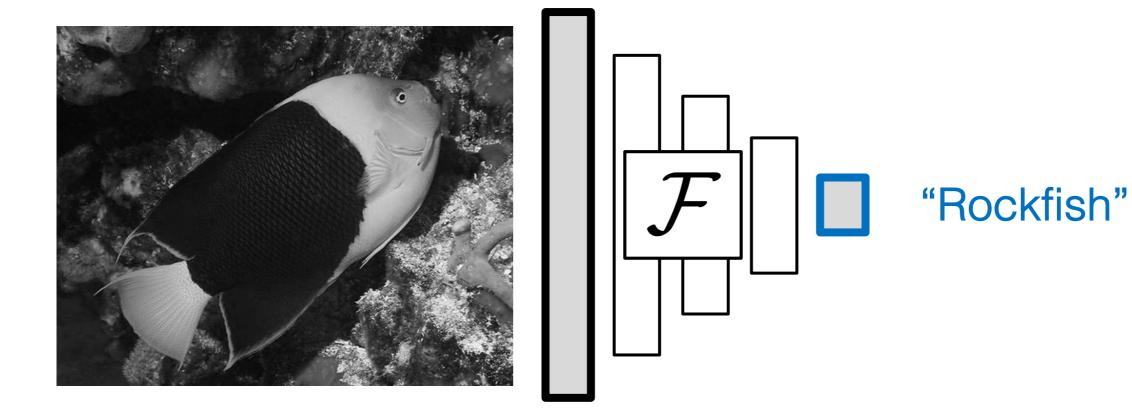


from Classification to Generation

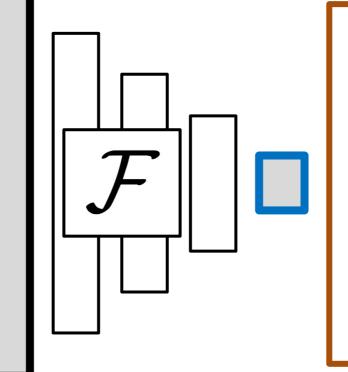


edicting the color value of an output pixel given a patch

Discriminative Deep Networks



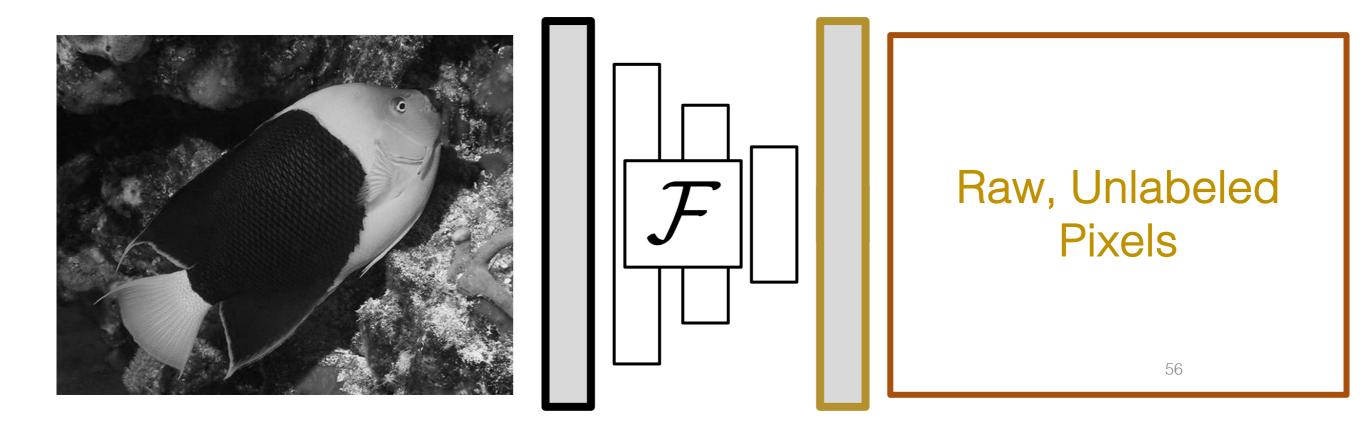
Discriminative Deep Networks



Raw, Unlabeled Pixels

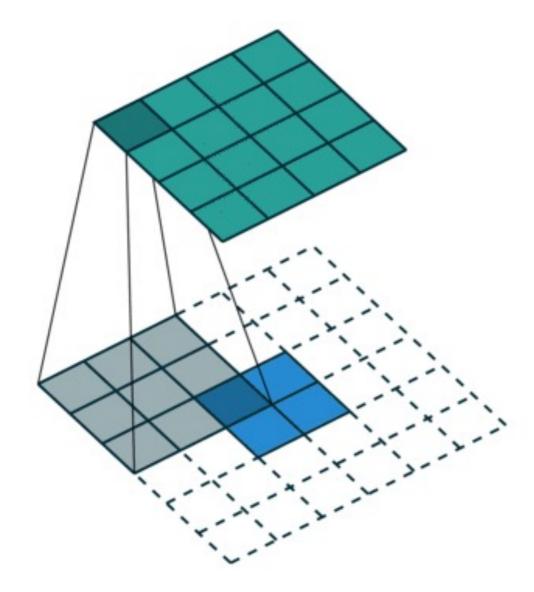
55

Generative Deep Networks

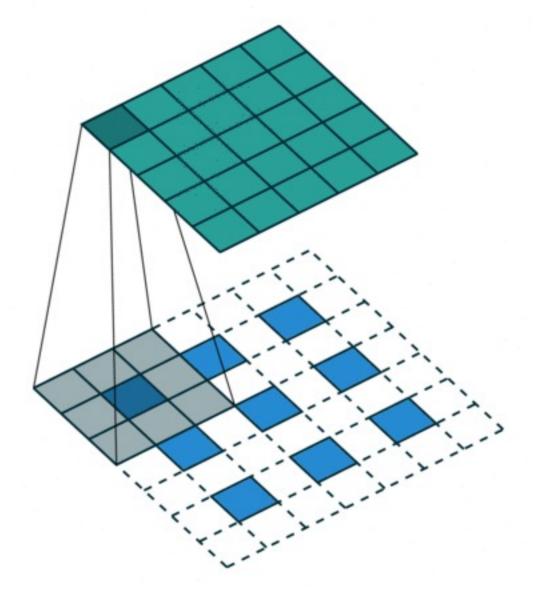


Better Architectures

Fractionally-strided Convolution



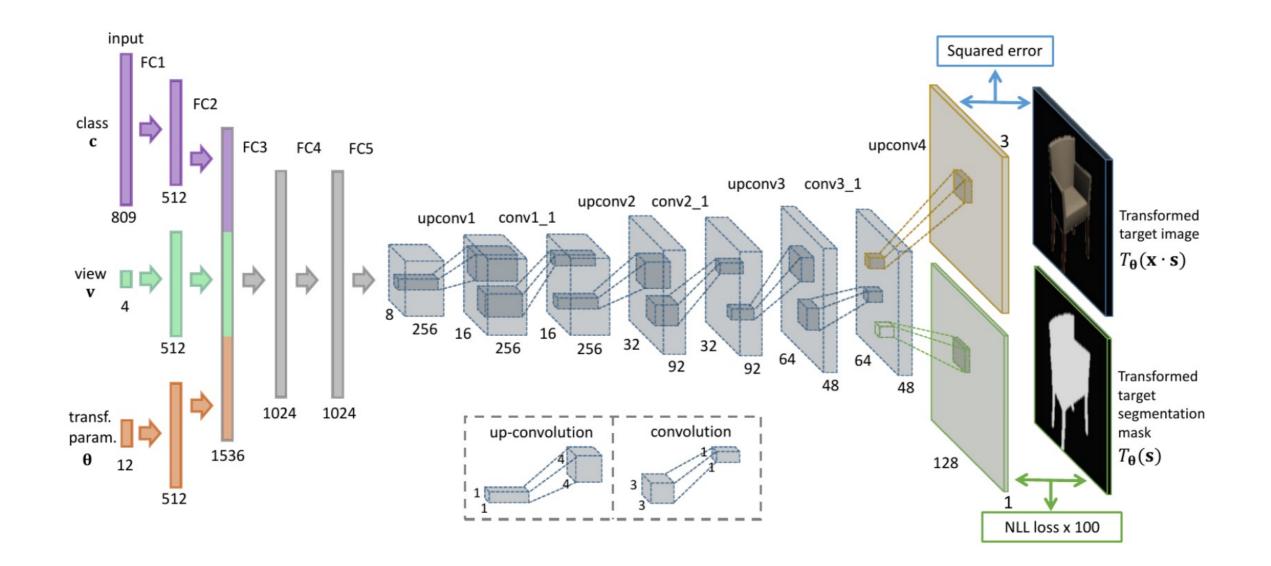
Regular conv



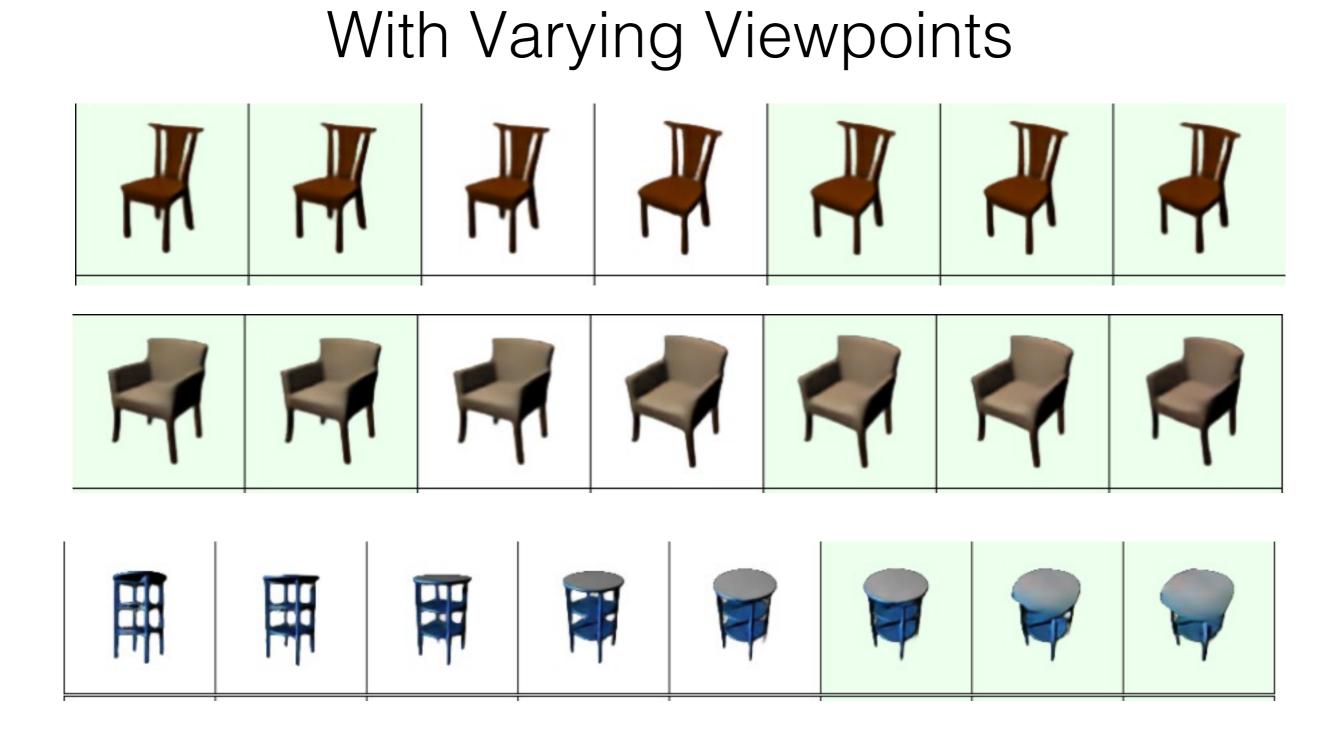
Fractiaionally-strided conv

© David Dau

Generating chairs conditional on chair ID, viewpoint, and transformation parameters



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

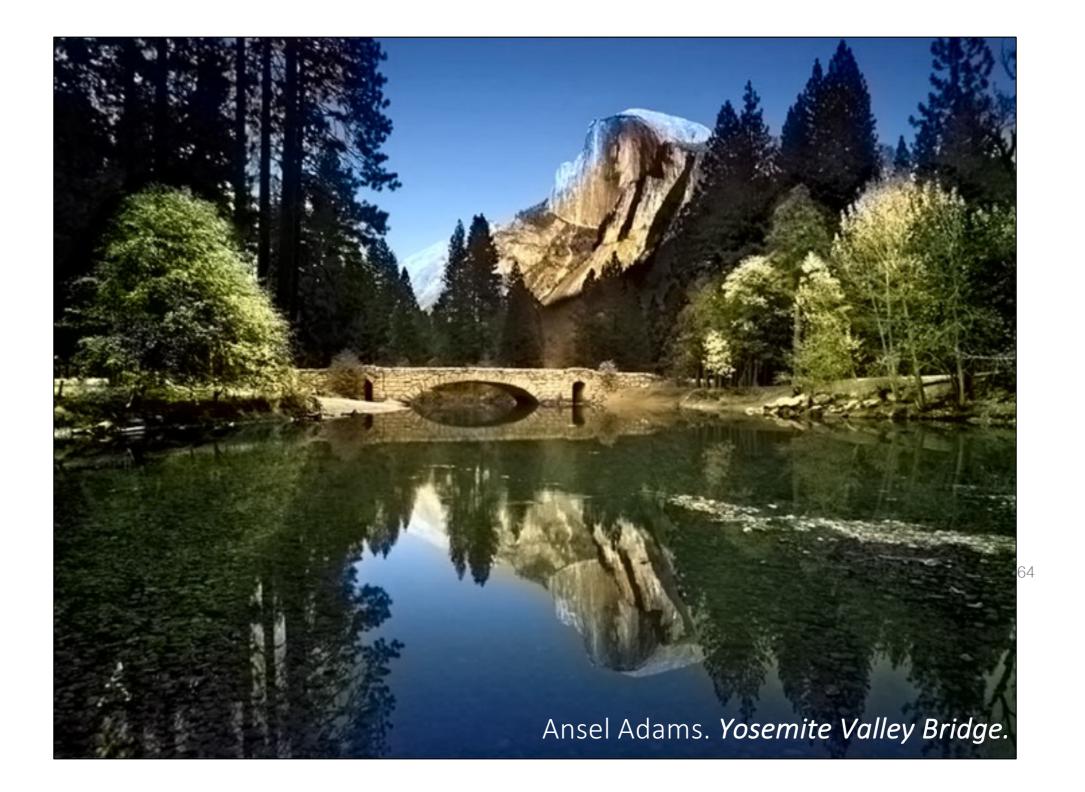
With Varying Transformation Parameters

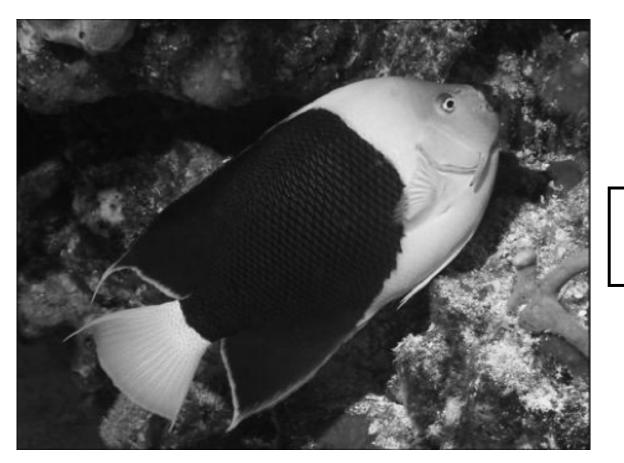
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017₆₁ (CVPR 2015)

Interpolation between Two Chairs

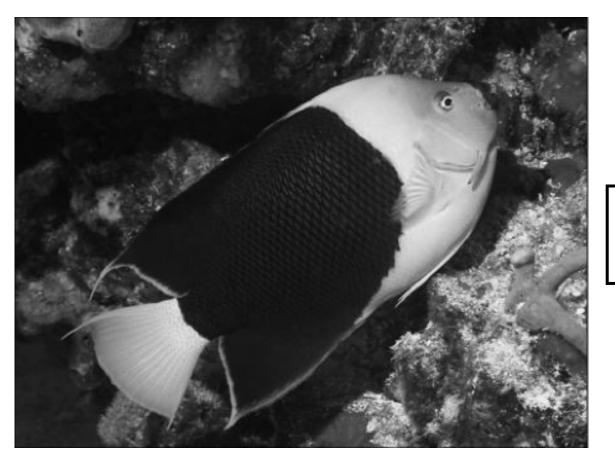
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI $201\frac{7}{62}$ (CVPR 2015)

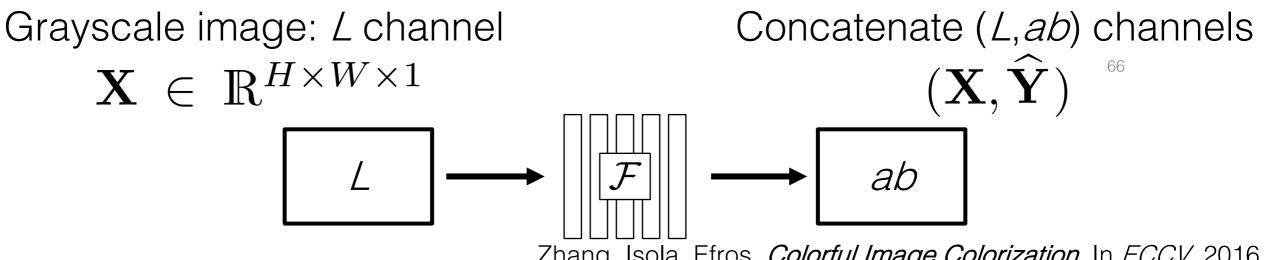
Better Loss Functions





 \mathcal{F}





 \mathcal{F}

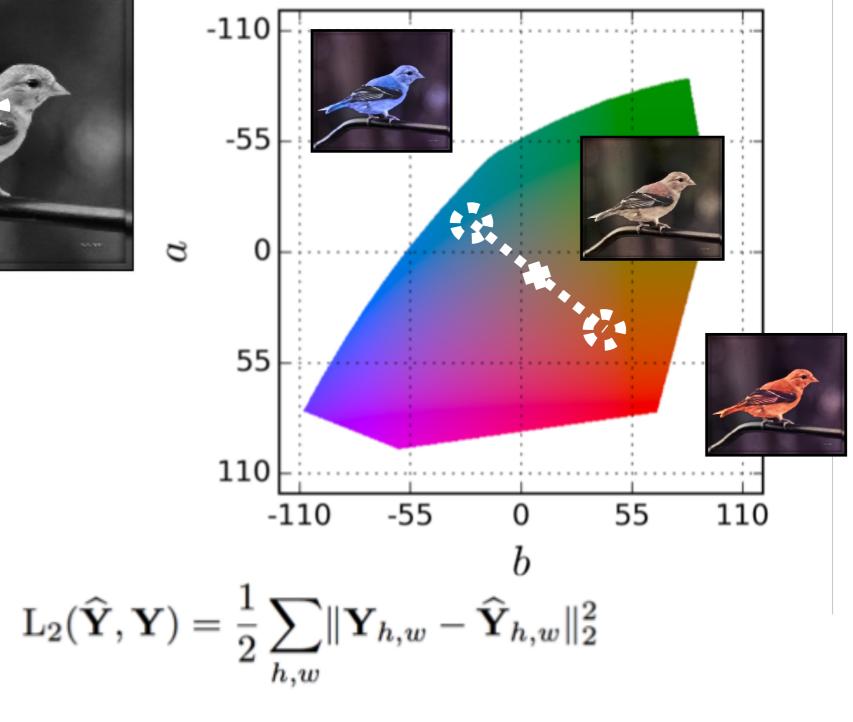
Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.

Simple L2 regression doesn't work ☺

 Input
 Output
 Ground truth

 Imput
 Imput
 Imput
 Imput

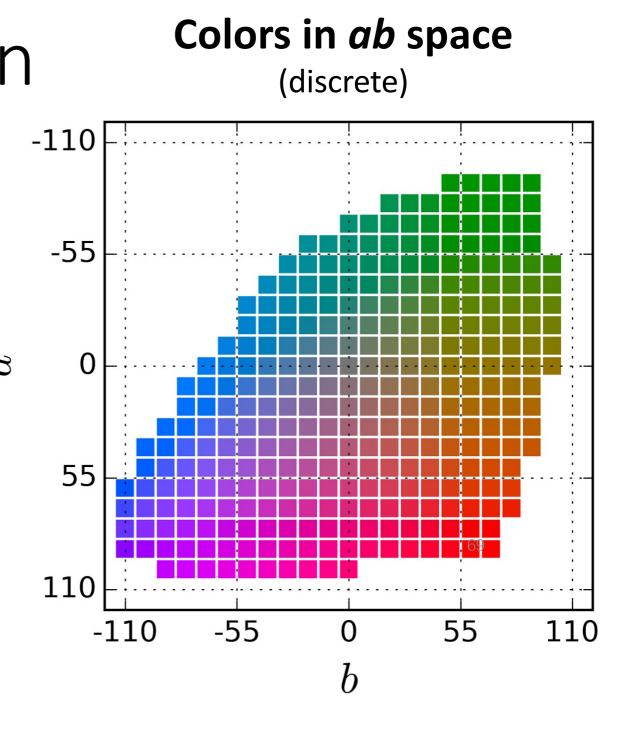
$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} \|\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}\|_2^2$$

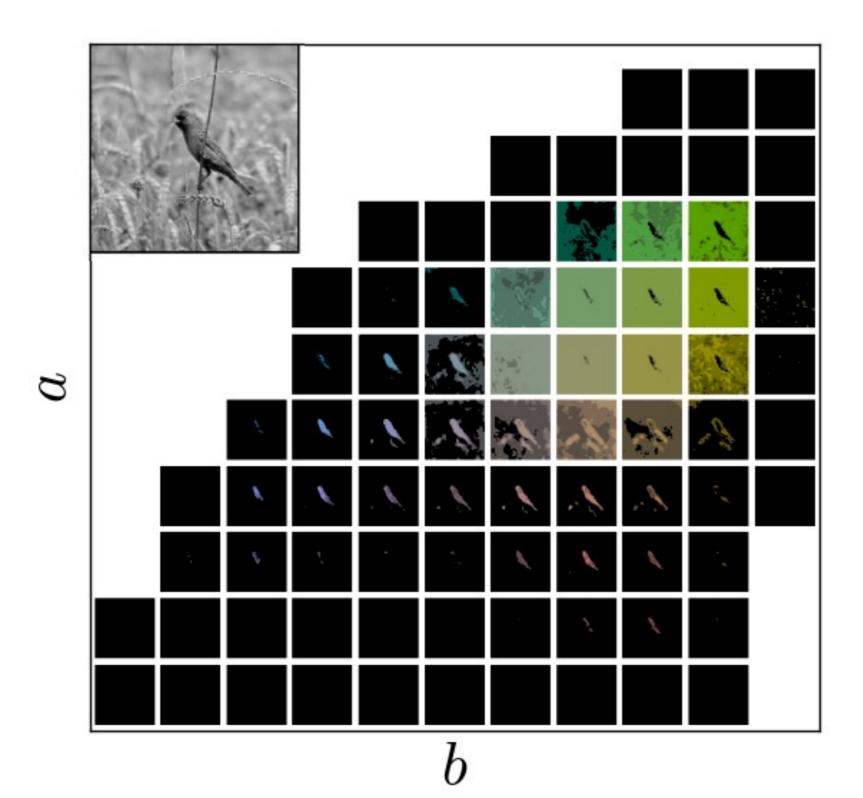


Better Loss Function $\theta^* = \arg \min_{\theta} \ell(\mathcal{F}_{\theta}(\mathbf{X}), \mathbf{Y})$

- Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_2^2$
- Use per-pixel multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$





Designing loss functions

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]

Thank You!

16-726, Spring 2022 https://learning-image-synthesis.github.io/sp22/